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FOREWORD 

This report w a s  prepared by North American Aviation, Inc. , Space 
Division , under NASA Contract NAS9-4552, for the National Aeronautics and 
Space Administration, Manned Space Flight Center, Houston, Texas, with 
Dr. F. C. Hung, Program Manager and Mr.  P. P. Radkowski, Assis tant  
Program Manager. 
Structural hiechanics Division, MSC, Houston, Texas with Dr. F. Stebbins 
as the technical monitor. 

This work w a s  administered under the direction of 

This report is presented in  eleven volumes for convenience in handling 
and distribution. A l l  volumes a re  unclassified. 

The objective of the study was to develop methods and Fortran IV 
computer programs to determine by the techniques described below, the 
hydro-elastic response of representation of the structure of the Apollo Com- 
mand Module immediately following impact on the water. The development 
of theory, methods and computer programs is presented as  Task I Hydro- 
dynamic Pressures,  Task II Structural Response and Task IXI Hydroelastic 
Response Analysis. 

Under Task I - Computing program to extend flexible sphere using the 
Spencer and Shiffman approach has been developed. A d l y t i c a l  formulation 
by Dr. Li using nonlinear hydrodynamic theory on structural portion is 
formulated. In order to cover a wide range of impact conditions, future 
extensions a re  necessary in the following items: 

a. Using linear hydrodynamic theory to include horizontal velocity 
and rotation. 

b. Nonlinear hydrodynamic theory to develop computing program on 
spherical portion and to develop nonlinear theory on toroidal and 
conic sections. 

Under Task If - Computing program and U s e r ' s  Manual were developed 
for nonrymmetrical loading on unsymmetrical elastic shells. To fully 
develop the theory and methods to cover realistic Apollo configuration the 
following extensions are recommended: 

a. Modes of vibration and modal analyris. 

b. Extension to nonrymmetric short time impulses. 
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C .  Linear buckling and elasto-plartic analysis 

These technical exteneions wil l  not only be useful for Apollo and 
future Apollo growth configurations, but they will also be of value to other 
aeronautical and spacecraft programs. 

The hydroelastic response of the flexible shell is obtained by the 
numerical solution of the combined hydrodynamic and shell equations. The 
results obtained herein a r e  compared numerically with those derived by 
neglecting the interaction and applying rigid body pressures to the s2me 
elastic shell. The numerical results show that for an axially symmetric 
impact of the particular shell studied, the interaction between the shell and 
the fluid produces appreciable differences in the overall acceleration of the 
center of gravity of the shell, and in the distribution of the pressures and 
responBes. However the maximum reaponses are u4thin 15% of those pro- 
duced when the interaction between the fluid and tht jhell  is neglected. A 
brief summary ot results i s  shown in the abstracts of individual volumes. 

The volume number and authors a r e  listed on the following page. 

The contractor's designation for this report is SID 67-498. 
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ABSTRACT 

The ohell of revolution program dortribed in this report was  developed 
as a baric tool to be ured in the elartic, load-deflection analysis of shell 
rtructurea rubjected to arbitrary load8 and temperatures. The program is 
applicable to mo8t aerospace-type 8heU element8 (e. g., boorters, reentry 
vehicleo, etc. ) a6 well  a8 ground-bared rhella. 

The computer program ir bared on the numerical analyrir presented in 
Reference 1 and ir rertricted to l inear-ehrtic thin-rhell theory. 
ys i s  utilises 
variation of Froblem varbbler.  A reduced rat of rhell field equations for 
each Fourier harmonic of load rerultr from wing Fourier approach. The 
finite difference form of the roduced rhdl equations are solved by a direct 
matrix elimination procedure. Solutionr for various Fourier harmonics can 
then be summed to obtain the general rolution for arbitrary unsymmetric 
loads. 

The anal- 
Fourier aerier e%p&nr€on technique to reparate circumferential 

In u r h g  the program it ir aecerr8ry to  ,elect a mathematical model to 
represent a phyrical rhell problem, 
called shell region#, it ir porriblt to d y q e  complicated shell configurations 
a s  a series of shell regions of simple 8hap8 ,  The procedures for connecting 
shell regions require the ratirfaction of boundary and junction conditions in 
the program. 

By introducing fictitious subdivis ions 

The computer program,which war written in FORTRAN IV and appli- 
cable to the IBM 709017094 ryitemr, war  developed in a general fashion to 
permit the conrideration of variety of shell problems. Wherever possible, 
time and space-raving techniquer have been employed to rimplify and reduce 
the amount of hput d8ta to be rupplied by the war. VmbUr option techniques 
have been ured to pormit more genorrlity rad rtill keep data input at a 
rerpectable minimum. The rolutionr obtained from the program yield defor- 
mat ion~,  forcer, momentr, rtterier, etc., at each rtatim of a shell region. 
Thir output ir prerented in tabular form with an option for graphical plotting 
of rerultr . 

The umrr of thi8 ptagram rhauld bo forew8raed that the program is 
only a tool and ca r rb r8bk  b i g h t  mwt k wad in relating rerults to an 
actual phy8iCd r h d  problom. In turn, tb. raaulk obtained are cnly as good 
88 the m8them8tiC81 modo1 r o h c k d  for tho probhm. The numerical proce- 
dure ured in the rolutbn of diffor8ati.l r h d  oquatioru ir an approximate one 



(finitc differences) and results murt be interpreted in terms of round-off 
e r ro r s  that a r e  inevitable when urnin8 approxiwlte numerical techniques. 

This report is intended to supply the information necessary for  the best 
utilization of the shell of revolution computer program. Considerable detail 
hils been incorporated in thie report to aid not only the engineer but also the 
programmer in understanding the program. It is hoped that this information 
\vi11 permit the modification and extenrion of this program to handle various 
other types of shell responre problem# (e. g., dynamics, buckling, etc. ). 

This user's manual has been organized in three basic sections. 'The 
f irst  section (I) presents the theory w e d  ar ir baris of the shell of revolution 
computer program. 
developed in Reference 1 is repeated together with modifications and improve- 
ments that have been developed at SLID. 
computer program is given in Section 11. 
a s  an aid to the user in establirhing a mathematical model for a physical 
shell problem in terms of the program format. Limitations and general 
program characteris tics are given. Section 111 gives informatian for the 
detailed use of the program. 
grams, sample data sheets, example problem, etc. As one becomes familiar 
wi th  the program, this section w i l l  probably be the most used since it gives 
detailed instructions and characteristic8 of the program. 

For ease of reference, much of the  numerical procedure 

A general description of the 
This section is intended to serve 

Included are input data shel l  format, flow dia- 
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1 . 1  INTRODUCTION 

The general numerical procedure developed in heference 1 for the 
analysis of unrymmetrical bending of ahells of revolution forms the basis of 
the computer program. Included is the program aro extenrio~lr and improve- 
ments to the bark analyrir that were developed at S&fD and are reported in  
Referencer 2 and 3, 

The analyrir is bared @n thm genoral firrt-order linear shell theory of 
Sanders (Reference 4), which has been ornemsed (Reference 5) as the "best" 
of the many competing thin-sholl theorier in the literature. Al l  pertinent 
variables arc expanded into Fourier sorbs  in thm circumferential direction 
which permit decoupaed rata of ordinary diiforsntial equations in terms of 
the individual Fourier componontr. 
differential equations in the rnorid~olul caordirute then are solved using a 
direct matrix elimination techniquo (Potterla Method) (Reference 6) .  

Finite diffareace approximations to these 

This section wi l l  present the genoral theory which forms the basis of 
the computer program. Nomenclature and approach similar to that of 
Reference 1 will  be used together with appropriate modifications. 

0 

1 . 2  SC3PE AND LIMITATIONS OF THEORY 

The shell theory on which the program i s  based is restricted to linear, 
elastic, thin-shell theory. Implied by the above statement and other 
assumptions introduced in the analyrim are the following: 

a. 

b. 

C. 

d. 

e. 

The thicknesr of the shell at any point is small compared to the 
other dimensions of the ahell. 

Deformations of the shell are small compared to the dimensions 
of the shell. 

A l l  portions of the rhell deform elastically, obeying Hooke's law. 

The shell ir 'tcomplote'l an well  am oxisymmetric, i. e. 
boundarieo a re  at  meridian 

its only 
.dr and inner and outer surfaces. 

Each layer of shell material ir air &-!. 3 !;eve two-dimensional 
clastic irotropy with terpect ' 3  ' ', . . I .  3 tangent to its surface, 



f. 

E. 

h. 

i. 

j. 

but Young'r modulur ir permitted to be variable (and dirconthuour) 
through the thicknerr am w d l  01 in the meriodional direction. 

~ ~ o i ~ s o n ' s  ratio ir arrumed conrtant in each shell layer. 

Arbi t rary loads and temperature diatributions are permissible. 
However, the prerent u u l y r i r  ir inapplicable when circumferential 
variation of temperature ir ruffkier?tly great to produce appreciable 
circumferential changer in Yaurg'r rnoduluts. In such catser, 
average valuer of Young'. modulus can be used to obtain approx- 
mate res-dts. 

Redundant shell structurer can be analymed only indirectly using 
the program. 

The effects of transvatre shear dirtortion are neglected in the 
analysis. 
Reference 7. 

A procedure %r including these effects is described in 

Instability is not considered. 

1.3 SURFACE GEOMETRY AND COORDINATES 

Figure 1- 1. Surface Geometry 
and Coordinate6 

Material points in the shell can be 
#pacified by means of the orthogonal 
coordinates (I, 8 , q  ), (see Figure 1-1) 
where 0 is the meridional distance 
measured fram a boundary along an 
axisymmetric reference surface, 6 is 
the circumferential angle, and 5 is the 
normal, outward distance from the  ref- 
erence surface. In homogeneous shelis, 
the micidle surface always is used as the 
reference surface; but when, more 
generally, the Young's modulus E is 
variable, the reference surface is best 
choren 80 that 

/ & E d 5  = 0 

where the integration is through the thicknerr, {Thir choice, as wil l  be seen 
later, simplifier the conrtitutive relation8 of slartic shells. ) If the shape of 
the reference surface is given by r(o),  whore r ir the distance from tne axis, 
the principal radii of curgature are 

- 2 -  



Re = r I I  - (dr/ds) 2 I -1/2 

Introduce th;. nondimensional meriodional coordinate = s / a ,  where a is a 
tet'erence length; then, with P = r /a ,  the nandimenaional curvatures 
rs' = a/R6 and u8 = am0 can be found from the formulas 6 

where 

Y =  6 , P  (5 )  
f 

In these equations, and henceforth, ( ) E (d/dS) ( ). 
Codazzi identity 

Finally, note the 

ar,d the relation 

6 we P+/ ? = - w 

i .  4 EQUILIBRIUM EQUATIONS 

The components of membrane force per unit length, transverse force 
per unit length, moment (about the reference surface) per unit length, and 
load per unit area (assumed to be applied at the reference surface) are a s  
shown in Figure 1-2. 

l 

8 e 

Figure 1-2. Force., Moment., and Iaadr: a) Membrane Forces per Unit 
Length, b) Transverse Force8 per Unit Length, c) Moments per Unit 

Length, d) Loads per Unit Area 

In the Sanders theory, the ohearing force. Nee and N e t  , a s  well a s  
t h e  twisting moments M$@ and M e t ,  ar3 not handled separately 'aut arc 
combined to provide the modified variabler 



.I 11d ii f 4 j  = QQnte + M e t )  (9 )  

With the elimination of the transverse forcee Q k  and Q,, the equilibrium 
equations of the Sanders theory (reference 4) can be written, for shells of 
revolution, a s  

- a  8 I 
( P N ~  + n ( s g e )  -P#v@l + ~ ~ ( ~ ( P " C ) + $ ~ ~ e )  - P  M e  I +  

(104 1 2 2 tat 0 w e  )-@-@ + a pq 6 = 0 ae 

2 ap(w N t w  N ) +  a p q = U  

1 . 5  DISPLACEMENTS, ROTATSOW, ANI) STRAINS 
5 5  8 8  

The displacements and rotation8 of .the reference surface (Figure 1-31 
are related by the equations 

The membrane strains of tne reference surface are given by 

wherecc e is half the usual engineering shear atrain. 

- 4 -  



Figure 1-3. a) Dhplacementr; b) Rotations 

rinally, the measures of bending dirtortion used in the Sanders 
theory .ire 

Then, by the usual Kirchhoff hypothc8is ("normals remain normal") 
zrnd the neglect of t e r a s  of order &/RB and 6/+  relative to unity,. the 
longitudinal, circumferential, and shear strains at a distance 
reference surface are 

from the 

re spec tively. 

1.6 CONSTITUTIVE RELATIONS 

Neglecting, ar usual, the effectr of r trearar  normal to the shell 
permits the strers-otraia-temperrtur. r d 8 t i O a 8  to be written as 



where the temperature change T may vary wi th&,  as well as  with 6 and e 
The Young's modulus E and the thermal expaneion coefficient o will, 
however, be permitted to vary only with E and 5 -  
and moments are approximated clomcly in the shell by the lollowing integrals 
through the thickness: 

The (modified) forces 

Then, with the use of the defining relation (Equation 1)  for the reference 
surface, together with the aseumption of constant Poisson's ratio, it is 
found from (Equations 14 through 16) that 

and 



1. 7 FOURIER EXPANSIONS AND NONDIMENSIONAL EQUATIONS 

Thth independent variables now will be expanded into Fourier series, 
with appropriate normalization to provide nondimcnsional Fourier coefficients 
of roughly comparable magnitudes for the different variables. Letting IT- 
be .t reference s t ress  level, Eo a reference Young's modulus, and ho ,., 
reference zhickness, solutions of the field equations will be sought in the 
following forms: 

(0 

n= 0 



These Fourier expansions are consistent with loadings of the forms 

q = -  Q o h o  2 ,in) ( 5 )  cos I16 

- 8 -  



and r~ temperature distribution 

The varioue field equation# now can be decoupled into separate sets 
for each Fourier index n; for convenience, the superscript (n) on Fourier 
coefficients will be omitted in the equations that follow, The equilibrium 
equations (Equation 10) lead to 

where A = h,/a, and use has been made of the geometrical identities Equa- 
tions 6 and 7). The relations (Equations 11 through 13) give 

- 9 -  



and finally, the constitutive relation8 (Equation8 17 and le), inverted to give 
forces an< moments in terms of straina and bending distortions, lead t o  

and 

where 

(36)  

be omitted htmceforth. ) 



It may be remarked i I t  this point that the Fourier expansions (Eqqa- 
tione 25 and 26), which a r e  syrnmctrhcal about 0 = 0 for q, q5, and T and 
mtisymmetrical for q a rc  not the most general that could exist. For 
full generality, these expansions ahodd be augmented by the additional 
series 

e 

m 

n= 1 

In this case, the form of the ohell field equationr can be obtained by setting 
the Fourier harmonics (n) to negative values in Equations 27 through 35. 
These effects have been neglected in this program but can >e included with 
minor modifications of the program. 

1.8 REDUCTION TO FOUR SECOND-ORDER DIFFERENTIAL EQUATIONS 

The set  of field equations obtained constitutes an eighth-order system 
that can be reduced, in a conventional fashion, ,to three equations in uk, ue, 
and W. 

equatisnr, each of mer Ind order, in the variable6 us,  ue, w, and m 
BO doing, it i 6  n e c e r i ~ r y  to eliminate me by m e a s  of the relation 

But a more attractive procedure is to derive four differential 
In 5’ 

+ d( l  - V  *jke - (1 -v)mT (37) me = u m S  
in order to prevent the ultimate appearance of dsrivatfver of order higher 
than two. Then, sub8tihating Equatfonr 37, 32c, and 31 into Equation 27 
and usin8 Equations 28 through 30 to eliminate the membrane rtrain and 

9 11 - 



bcmding distortion givcbs thrtw of t h v  alesirtad eyuations; the fourth c c,tution 
i s  given by Ekpation 32a, again with kknncl kg expressed in tr.L-ms o f  
the* displiictmcnte. Thc resultant set  thtm can be written as  

where the ;Is and 2’s are given in Appedbc A. 
writtcn in the matrix form 

Thcre equations can be 

4 / 
Ee +Fc + 6 z = e  

whcrr. 

i ; 9 )  

(40)  

- 12 - 



and 

E =  

G =  

- 
"1 

0 

0 

0 
- 

0 

"1 2 

a2 1 

0 

0 

a1 5 

"24 

a33 

- 
0 

0 

a27 

0 - - - 
a3 =5 a7 a9 

all =14 a17 

a20 "23 a26 Oa29 

a31 a32 =35 a36 - CI 

I alo a13 a16 O 
- -  .. - r3: i22 a25 

a34 0 

e =  

1.9 BOUNDARY CONDITIONS 

In the Sanders theory, the expressions for virtual work per unit 
length at the boundaries s = 0,t are 

where 

an ' 
/ 

= ( I / ~ P )  l ~ / a  WMS) t 2(aiiiSB /3 e )  - p M ~ ]  (44) 

are "effective" membrras and transverse shears, respectively, per unit 
length. (See Figure 1-4.) This form of the virtual work indicates the 
kinds of boundary conditioq that can be imposed; thus, either Ne or Us 
may be prescribed, either INke or U may be prescribed, and so on; or' 
more generally, NE and U ma y  be related through an elastic constr5int 
against ~ e r i d i ~ n a l ~ d i r p l a c e m e ~  a d  d o g o u r  carstraints can link N 
acd IJ Q S  and W, and M and@ Letting 

e 
E 

Se 
6 '  f € -  



give s (dropping sup e r scr ipt 8 )  

A 
t p  =the + b 2 / 2 W J 0  - w 6 )mto 

(46) 
A 
f t  = k 2 [ l m <  + V ( r n g  - m , ) + ( ~ n / ~ ) m  

[hen the boundary conditione just dimcummed always c a  be written (fer the 
nth Fourier components) as 

where 

Y '  

Figure 1-4. Effective Boundary Forces and Moment 



and where 0 and A are appropriate diagonal matrices, and 1 is a given 
column matrix. (For example, if us is given, the first diagonal element 
of S2 is zero, that of A is unity, and the first element of is the pre- 
scribed value d u t ;  if there is an elastic conetraint on u , then the first 
diagonal element of Q is unity, that of A is the appropria 5 e conrtraint 
coefficient, and the first element of vanishes.) But now it is desirable 
to exprerr the boundary conditions entirely in terms of z; from 
Equation8 28 through 32 and 37, it follows that 

h 

6 f = b u + bllue’ t b12ue t b13w’t b14w t b15m ’ 6 lo s 
t b16m6 t 2 Y ( 1  - w)mT 

where the b’s are given in Appendix A. These equations, together with 
Equation 28a, give 

where 

H =  

J =  

0 

b6 

bl1 

0 

b3 

b7 

b12 

0 

y = Hz/ t Ja t f 

0 

b8 

b13 

-1 

b4 

b9 

b14 

0 

0 

0 

b1 5 

0 

0 

0 

b16 

0 

f =  

Hence, the boundary condition8 (Equation 47) can be iritten as 

S2HZ’ t ( A t  s 2 J ) t  = 0 - Q f  

(49) 
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1 . 10 SINGULAR POINTS (APEX C o I v m m  

If the ahell har 8 pole (i.e,, r = o), coefficientr in the goUe.ding 
differential equation. become miagular. An hprarrsd procedure for 
handling much conditione has been outlined in Referencer 9 and 9 urd ir 
used in the d y d a .  The boundary coaditiOmr at the apex of a closed 
shell af revolution are described 88 f d w r  for each Fourier camponent (n) 

us = u e  = w ' = w *  '= 0 for n = 0 

for n = 1 

= w  = lAr  = o  for n = 2 

= O  for n g 3 

"i =us + = w  = m e  = O  

us = "0. 

us = w  =m€ 
There rpecial conditions can be cart in a matrix form identical to 
Equation 52. For this case, the matrix A + J is not of a diagonal form. 

1 . 11 DISCONTINUITY CONDITIONS 

The differential equations (39) are not valid at points in the she11 in 
which discontinuities in geometry (urd hence in the coefficients) occur; 
furthermore, E itself is ambigurn. at a dimcontinuity in the inclination of 
the reference Burface, where the directioar of u and w change abruptly. 
Accordingly, special transition equation6 mtut be derived which relate z 
and its deriwative on either side of a discontinuity. 

5 

In Reference 1, the special case in which reference surfaces coin- 
cide acrors a discontinuity was considered, (See Figure 1 0 5 ~ )  A more 
general condition, which was treated in Keference 2, occurr when 
reference surfaces do not coincide at dimcontinuities. This type of con- 
dition is considered for this program and wil l  be referred to as eccentric 
discontinuities. The effects of external line load end moments applied at 
the discontinuity are included in the analyois (Figure 1-5). A typical 
eccentric discontinuity model is sbi.sm in Figure 1-6. Roman numeral 
superscripts reftr to shell regions; thug, for the rmcample considered, 
II denotes values beyond and I valuer ahead of a diacoatinuity. The con- 
conditions of geometrical compatibility are (Fiprss 1-5 and A-6) 



Figure 1-5. Discontinuity 
Conditions 

Figure 1-6. EccGntric 
Discontinuity Model 

(53) 

I I =  ( u s I t  E cc 1 coo+ - WI sin+ k 
II I ue = ue t 

wu = [ut I t Ecc9S 'lain # + 4 cos + 
II I "5 = fbg 

where E,, is the dimensionless eccentricity of the participating reference 
surfaces measured along the radius of curvature behind the discontinuity 
point. It can be noted in Figure 1-6 that a positive value of Ecc corre- 
sponds to an abrupt increase in the radius of a parallel circle as one 
proceeds in the direction of increasing 6 . Equilibrium requires that 



where Po and MD are Fourier cocfficients of series expansions for 
externally applied line loads and moments; i. e., 

n=O 

The information in Equations 53 and 54 is reproduced in the 
equations 

a =  E,, 

- 
cos + 0 -sin # 0 

sin+ 0 cos + 0 

0 0 0  1 - 
- 
0 

0 

0 

0 

0 0 

0 

0 

0 

0 

0 

0 

0 

0 

t5 

(57) 
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Combining Equations 55, 56, and 50 then provides the equations relating 
(/)I1, (d)I ,  and zl: 

I I' 
4 

Hu(zn)  t IJu $1 z X - e H  ( 2 )  = @ o P g t Q f X - f 1 I  (62a) 

ZU = 4 .I t W I  HfzI t MJIzI t *fl t 'x MD] (62b) 

where the Roman numerals I and II mean that the matrices H, J, and f are 
to be calculated from Equation 51 on the basir of shell. properties just 
behind and ahead of the discontinuity, rerpectively. The equlibrium 
equations (39), the boundary condition8 (52), and the discontinuity condi- 
tions (62) will now be cast into a unified ret of appropriate finite-difference 
equations suitable for numerical analyris. 

1.12 FINITE DIFFERENCE FORMULATION 

A finite difference technique will be ured in the solution of the shell 
equations. In tre8ting complicated rheu configurations, it wil l  at times 
be necessary and convenient for analyrir purporer to divide the mathema- 
tical model of the rhell in combination8 of rmollsr region. The dividing 
line between regionr ir urually selected at dirconthuity regions. (See 
Section 2.5.) In the finite difference formulation, the path region will be 
subdivided into (Np-1) ecpwri incrementr of length Ap. Np corresponds 
to the number of rtation or pivotal pointr considered for the region. The 
pivotal pointr a r e  identified aiong the meridian by the integer index i, starting 
from i = 1 a t  = 0 (station 1) and proceeding to N-th rtation (i = N) occurring 
at the endpoint of the region (reo Figure 1-7). 



( Fictitious Point 
I --e- % 

0 1 2  

, j' 

t- Region@ 
N- 2 

'(Fictitious Point) k- 
Figure 1-7* Meridional Grid Points 

The regions are designated by Roman numeral superscripts I, 11, 
etc., and discontinuity stations by i P Jp. 
illustrated in Figure 1-8, the discontinuity *would correspond to station 

P i = N of region I, ju station i = 1 of region II, etc. 
can be varied from region'to region. Ohur, it i a  posdble to introduce 
fictitious discontinuities wherever a change in increment size is considered 
desirable. 

For the discontinuity junction 

The increment A 

The differential equations (39), boundary conditions (52) (excepting 
the closed apex condition), and discontinuity conditions (62) a re  written 
in  finite difference form at all stations on the basis of the usual central 
difference fJrmulas 

where the A must, of course, be the one corresponding to the region 
associated with the station i. 

Applying the above exprereionr at the endpoints of a region (i = 1, N) 
results in fictitious points occurring outride the range of the region 
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( i .e . ,  i = 0 , N  t 1). 
at a discontinuity point with fictitious point8 jU-1 and jI+i rerulting from 
applicatim of fiifference exprossionm 

Figure 1-8 illurtrater the mathematical mDdel used 

Fig  re  1-8. Finite Difference Stationr in Discontinuity Region 

The fictitious points can be mathematically eliminated by zpplying both 
boundary (or dimontiauity) a d  equilibrium conditions at the endpoints. 
The detrilr of this type of operation are described in Reference 2. In the 
original analyrir of Reference 1, a somewhat different approach was 
utilized in that equilibrium war not ratirfied at endpoints. The improved 
procedure of Reference 2 permits a more accurate representation of 
shell behavior at endpoints. 

In care of a pole condition (r = 0), the singularity does not permit 
writing both equilibrium and compatibility; as a rem& the procedure 
murt be modified for thim care. The ryproach used for this special came 
is to exprerr derivatives at sadpoiate ia tarmr of modified forward (back- 
ward) differences. The boundary condition for a pole condition will be 
written at; i = 0 and i = N with the help of 



The order of approximation of these expressions is the same as t h e  
usual central difference expraebicrne and is usually more accurate than 
simple forward or backward difference expressions used in Reference  1. 

'The convention wil l  now be adopted that, at the discontinuity (say 
P = 1). whenever z j  is written without a qualifying superscript, it means 
z J; then, whenever -I1 appears, it  will be repiaced by utilizing relation- 
s!iip according to Equation 58b. Similar operations would occi1,? for 
subsequent discontinuities. The results of writing the various difference 
equations just described can be stated compactly (excepting for pole 
conditions) as the following set of algebraic equations for z i  (i = I ,  2, 
3, . . N): 

-1 

Here, at i = 2, 3, . . N - 1 the internal point8 of the region we have 

where the appropriate value for A is used. 

At i = 1, we have been using the procedure outlined above and 
described in Reference 2 following 
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and i = N 

- -  - - 
where the matrices Ai, B1, C1 and x ~ ,  B N ~  EN a re  of the form of 
Equation 66 evaluated at i - 1 and N, respectively. 

At discontinuity locations jp, considerably more complicated expre s - 
sions for the matrices a re  obtainec, than ara reported in Reference 1, 
which arises due to the improved numerical model and the fact that eccen- 
tr ic discontinuities a re  considered. The details of obtaining these 
expressions are reported in Reference 2. A8 a result, the following 
form of the matricea of discontinuity location is obtained: 
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where 

The A 
jl or 

be modified a s  follows: 

B, C, and g matrices in  Equation 69 are given for either points 
by Equation 66 with t!:e appropriate ou erscr ipt  attached to E, F, 

Ci and A. At station just past a discontinuity (j 5 t 1) the matrices mkrst  

1.13 MATRIX SOLUTION OF DIFFERENCE EQU!sTLQNS 

The set of matrix equations (65) will be rroived by essentidiy the 
same formal procedure that ita used in Reference 1 €or the analogous 
equation for the case of axisymmetric lozjiro. of ehells of revolutlor-; this  
procedure is actually equivalent to eolution by the method 01 Gaussian 
elimination used in Reference 1 for the mame axisymmctiic loading Frub- 
lem. In its most primitive form, the Gaurrian elimination technique 
would proceed a s  follows: the f i rs t  of Equations 6-5 would be solved for 
z l  in terms of 22; this r e e ~ l t  would be subatituted into the next equation, 
and 7'2 would be found in terms of c3 and eo on; finally, the very last 
equation, together with tlie rerult for tN-1 in tttrma of X N  wo-dd determine 
zy and then all  of the 2 's  would be calculated in reverse  ord- r .  A tninar 
modification of thie method is deairablt, however (sild sometimes essen- 
tial), in the treatment of Equation 65 for the matrix Bo sometimes niay be 
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uinRular.* 
tion for to tnd zl, in term. of y: > drx l  ti:vn ~ J ~ O W C J ~ M  as just destcribed. 
From 

Accordinsly, the sultrl im is started by thc simultitneous solu- 

L 

Now write the general result for zi in terms of %it1 as 

*This occursD for example, in the case of a clamped edge, with 
us = ug = w = +k 2 0; then 

giving 

4 0 - I  = o  

Ro= 

which i s  singular . 

0 

0 

1 1 1 i A0 = 
i 

I 

0 I 
1 

a o = k  

0 

0 

1 

1 /a 

0 :I 0 
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The recurrence relation& (Equation 74), with thc initial from (Equation 72)# 

then provide all the P's and x's up to PN,l and X N - ~ .  
Z N - ~  = - PN-L ZN t XN-I into the lost of Equation (66) then gives 

Substitution of 

and then ZN-1 
20 i s  given by 

"N-2, . . . 81 can be found from Equation 73. Finally, 

Thus, the only matrix inversions involved in the solution for all the z l s  
a re  of 4 x 4 matrices, and the process is very well suited for rapid 
machine computation. The zj  obtained at a discontinuity station is, of 

Equation 62b. For a singular or pole condition, a slight modification in 
the elimination procedure is involved to accommodate for fkiite difference 
form (Equation 64) applied at an endpoint. The details oi this 2rocecicTe 
are described in Reference 2. 

course, roally z,. I The value of zp at this point can be evaluated from J 

1.14 C-ALCULATION OF STRESSES 

Once the 2's have been calculated, the s t resses  at a:iy ~ ' ~ i n t  in  t ??e  
shell can be found, 
from the expansions 

The stresses in the present solution a r e  obtained 
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Inverting the conrtitutive relations (Equation 19) and using Equations 23, 
24, and 26 giver 

Note that E, u , and Ttn) all may depend on 5 ,  the distance from the 
reference surface. 

Using Equations 32a, 32b, and 37 (and, again, casually dropping 
superscripts n) gives 

which, when w e d  in Equation 79, together with the strain-rotation- 
dirplacament equatianr (28 through 30),  leads to 

1 

W 

0 

0 
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I E0(l-v2)ad 1 - v  

t 0 

1.15 REMARK CONCERNING THE REFERENCE SURFACE 

A substantial simplificatioir in setting up the numerical analysis for 
computation may result from the observation that, in the spirit of tk’ a in- 
shell theory, e r ro r s  of the order of the thickness in the specification of 
the reference surface can be tolerated in the formulation of the equation 
of equilibrium. It is recommended accordingly that the key geor,Aetric 
function r(s) be started with respect to a surface chosen simply according 
to convenience anywhere in the shell wall. In other words, the condition 
(Equation 1) need not be imposed insofar as calculaticms of t e various 
geometrical parameters p , , C\t , and Y are concerned- Of course, i f  
Equation 1 can be satisfied easi lytn :>ere cdcuiations, there is no harm 
in doing so; but when, for example, the same shell is to be analyzed for 
seve r a1 different temperature conditions with diff c r ent re  sult  ant variations 
of Young’s modulus, it is not recommended that new reference surfaces 
and new variations of P , w e  , etc., be calculated for each case. On the 
other hand, it i r  essential that the rigorous location of the reference 
surface enter into Equztionr 34 and 36 for the nondimensionatl bending 
stiffness d and the thermal moment mT. Similarly, the correct value 
of C as measured from the true reference rurface must be used in 
Equations 80 through 83 for the s t res re i .  
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1.16 BRANCHING OF SHELL REGIONS 

It has been tacitly assumed that the shell under consideration has no 
more than two boundaries; a multiple-branch shell such ;IS shown in  
Figure 1 -9a may be analysed, however, by applying appropriate transition 
conditions at the branch point. 

Define separate families of awiliary matrices PI, pnD ~111, XI, 
,I1 and ~ 1 x 1  with the propertie8 

y I = - Pi 1 1  Zi+ l  + Xf 

m = - P i  luI Z E 1  t xi m 

Figwe 1-9. Branched Shells 

where the ruperrcriptr refer to the reparate branches shown in 
Figure 1-98. It i8 p080ible to rtart the calculations of PI, X I  and PU, xII 
at the bound8rier of brurcher I aad 11 and then leap acrorr the juncture j 
t s  the calculation of Pm, xm. The reverie #weep for the calculation of 
the 2 '8  then would rtart at the boundary of branch III and, at the juncture 
j, continue indspendently along the bruzcher I and X I  back to their 
respective bouaduier. The details of thir procedure are herein given. 
This method can be extended readily to handle a multiplicity of branches 
as in Figure 1-9b; it will not, kowever, be applicable to cleeed loops 
(Figure 1-9c), which must be treated separately by traditional cut-and-fit 
method8 Of iad8tOX'XXlh8te rtrUCtW8l 8 d y 8 i 8 .  
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The mathematical niodcl considered for the numerical solution o I  
branched shell problems is shown in Figure 1-10 with the possibility 01 
concentrated force PD and MD applied at the juncture included. 
grain has been set up to handle 4 shel l  branches meeting at  a common 
point. 

The p r o -  

Figure 1-10. Mathematical Model for Branched Shell 

By analogy with the previous discussion on discontinuity conditions, we 
may repeat here for branched shells the compatibility and equilibrium 
equations in the following manner: 

(M = I, II or 111) t UIV t ue M 
e Compatibility : 

Wnr = u y  qin+M t w M  cor+M 
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By recalling the definition of the y (Equatiorr 48) and z (Equation 40) 
matrices and introducing the diagonal matrices 

P =  
1 

1 
0 1 (87)  

Equations 65 and 86 may be recast in the formulas ior cqmpatibility 

P"IV + '1Y IV 5: B d , I  t qyI = p = z =  t qy u =  p d = P  t q y  ( 8 8 )  

and for equilibrium ' 

where 
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Introduciaff: Equatioorr 36 into 88 a d  89 and noting q f  = 0; Pf  * 
8 4 1  = af ,  we obtzin: 

f and 

fo r compatibility: 

and for equilibrium 

A central finite difference rchcme ir u r d  to obtain the numerical 
solution of Equations 91 and 92 within the framework of the Gaussian 
elimination procedure. 

To eliminate the fictitious points (th y will e use in calc ating for r $ $ i v  internal forcer and rtrcsrei at junction) sj+is nj+l,  zj+1 and zj+1 that 
appear, we utilize the equilibrium equation. a t  the enas of the adjoining 
regions of the juncture fn a farhioa rimilar to that used in the discontinuity 
section. After  rubstituting the expterrioar for fictitious points in Equations 
91 and 92 and recalling the definition# of the A, B, and C matrices (Equa- 
tions 52), we may write the rf9urriva equatioa equivalent of Equation 54 for 
the branched 8hell. As (for j ): 

b 
where 



and 

where 

For the remaining branch regments (i.e., M = I, II, 111), the rollow- 
ing recursion formula ir  urcdt 
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whare 

M - 1  
Qj = M M  

PM = Md 
J 

and (MM) i s  given by Equation 95. 

T’nus, from a knowledge of PI  PP PIn - - -, PN-l andXf-l ,  
j-1’ J-1’ j-1 J -  1 

XI1 , - - -, XNol, the calculation can proceed directly to the determina- 
N N  tion of the Nth rhell region, P , X; and then to the boundary of branch N 

j -1  J-  1 
J J in the standard farhion. 

APPENDIX I& FORMULAS FOR COEFFICIENTS 

The coefficients &I,  a2 . . . a36 in Equation 38 are as follows: 

a1 = b 

a2 = Y  b t b  
I 
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[ ’-- t ( l + v ) y  I - X2d ( 1 - v ) Y n 2  

P 2  

6 w e  
+-- w 

P 
bY n (1 -v)nb’ k 2 d ( 1 4 n  

2 P  
( 3 - 4  - a l l  = - -  

2 P  
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bn (we t v w E  ) h2dn ( l - V )  
a17 = -- ---+ 

P 2P 

"E 
-he - 3UE ' ) I  - A2d' (l-U) [ ( l t v )  y 



= d ( w p u y w  ) 
a3 1 € 
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a33 = - d 

a34 = - d v Y  
2 2  a35 = dwn / P  

a36 = - 1 
The CIS are 

c1 = - pE t t*' - 1 2  ( 1 - w ) Y q  

c4 = m T  

Finally, the b's in Equation (49) are 

bl = b 

2 t ( 1 - w )  A d (1-V) - t - ( 3 w e  -"# 
b6 - 2 0 



b13 = Add (1-v) 1'211 2 2  l p  ) t (l+v) y21 

b 1 4 =  - A 2 d ( 1 - w )  ( 3 t v )  (Yn2/p2) 
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PAGES 40 AND 41 ARE M I S S I N G  FROM l H E  ORIGINAL DOCUMENT. 



paragraphs that  follow a re  intended to aid in formulation of the problem 
for program use and au2mttnt the detail input instructions Ln Section 111. 
ease o f  reference, F O R l H A N  instruction symbols usod in  the program and 
related to the descriptivc paragraphs itre placed in parentheses following 
paragraph titles. 

For 

L. ' L ' PROGRALM CAPABlLl' '35 AND LIMITATIONS 

Before describing s. 'me of the general program characteristics, it 
will perhaps be worthwhi:. to l ist  some of the program features that a r e  
not generally present in other shell analysis programs. Also included in 
this  list a r e  limitations in the program that have resulted due to theoretical 
restrictions, computer storage capacity, economic considerations, etc. 

a. 

b. 

C. 

d. 

e. 

f. 

g* 

A shell structure having virtuall. any combZnation of abrupt 
discontinuities in geometry, loads, temperature, and material 
properties can b e  analyzed by breaking the structure into the 
appropriate regions. 

The main requircrnent in each shell region is that geometry, 
material properties, loads, and temperatures vary smoothly 
along the generatrix or meridian lbe.  

A s  many as  50 (estimated) integrally joined shell regions can 
be analyzed a s  one shell structure. 

A s  many as  four regions may be joined at one cornnion J u n c t i o ~  
(branch point). 

Line loads and line moments can be applied at junctions between 
regions. 
occurring 2t discontinuity junctions (juncture of two shell 
regions) i s  automatically handled by the program. 
points, these effects can be handled by an approximate 
procedure o r  minimized by appropriate selection of junction 
point . 
Laminated d e l l  structures consisting of up to three materials 
broken into a s  inany as six intimately bonded layern  czn be 
considered by the computer program. 

The effects of eccentricity of reference surfaces 

At  branch 

A l l  materials excepting POiison'r ratio can vary from layer to 
layer through the thickness a8 well a s  along the meridional 
coo r d  in ate. 



h. 

i. 

j -  

k. 

As many ;is 150 integration intcrvals (station points) can bc 
considered in t * . t c . l i  region. 

Curve fitting tc*chniques a r e  utilized to reduce amount of input 
data. A second-degree polynomial St i s  usctl. 

Both unsymmetric surface load and temperatures can be applied 
to t e shell.. 

The numerical solution procedure allows for high accuracy 
without excessive use of computer time. 
running time 150 stations per minute fo r  each Fourier harmonic.) 

The variation ui temperature across  the cross-section 
can B e continuous a d  piece-wise linear through each layer. 

( AFproxirnate machine 

2 . 3  SIGN CONVENTIONS AND DIMENSIONS 

The sign conventions used in the program a r e  illustrated in Figures 
1 - 1 through 1-10 in Section I. To briefly augment, the s t resses  Q 6 ,  m e  and 
membrane forces NE, Ne are positive when t h r v  tend to produce tension and 
negative when they a r e  in compression. The momentsM M a re  positive 
in sign when they tend to produce tensile s t resses  in the inner (bottom) 
surfaces and compressive stresses in the outer (top) surface. 
Section 2.4. ) The extensional displacement u and transverse deflection w 
a r e  positive when the E and coordinates, respectively, a re  increased. 

S' 6 

(See 

- 
In using the program, all data specified must bc dimensionally con- 

In the manual. the quantity P will indicate f c  rce  quantities (e. g., 
The program output yieids 

sistent. 
pounds) and L length quantities (e. g. , inches). 
results in force and iengfh that a r e  consistent with the. innut quantities. 

2 .4  RZFERENCE, INNER, AND OUTER SURFACES 

The reference scrface 
E,,uation 1 be satisfied. 
3ased upon this reference surface. 
simplification is obtained when specifying key geometric functions (e. g. ,  
r ,  " 5 ) .  if ihe reference surface is chosen according to convenience anywhere 
within the shell  wall. 
evaluated systematically along the lines discussed id Section I. 

= 0 is chosen such that the requirements of 
The ~ross-sec t iona l  properties a r e  then evaluated 

As discussed in 1.15, a substantial 

However, the .:hell stiffaess parameter should be 

It will be convenient to refer to inner and outer surfaces of the shell. 
One can keep the inner and outer surface definitions clear by remembering 
that in direc'ior. :ti hcreasing value of 6 ,  the outer surface is  on the left 
and the inn' - -r 1;- t [ ~ e  right when the geometrl is drawn with axial 
distance iq.- . . * f r  c ? to bottom and radial d i spnce  frcm left to right 
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as shown in Figure 1-1.  
st met imes  be r e fe r r ed  to ;IS the "bottom" (BOT) s u r f a c e  and o u t e r  as  the  
l l ~ o o l ~  (TOP) surface.  

Ilsing the s a m e  descr ipt ion,  the inner su r face  will 

2.5 SHELL REGIONS (EKE;) 

In solving a shel l  p roblem it i s  n e c e s s a r y  to  se lec t  a mathemat ica l  
model to  represent the actual she l l  configuratiora. 
convenient in  establishing a suitable mathematical mpdel for compl i ca t e j  
shell  configurations to ficti t iously divide the she l l  along its length into a 
number of "regions." Thus,  the f i r s t  step in the  analjwir, of shcli problems 
is to delineate the "regions" of the mathemat ica l  model. 
tiivision results in each region being a simple she l l  e lement ,  such a s  a 
cyl inder ,  sphere ,  cone, etc. 

It may  be n e c e s s a r y  or 

Ideally,  th i s  

The main requi rement  in delineating a she l l  region is that  shel l  
p roper t ies  and loads v a r y  smoothly along the gene ra t r ix  o r  mer id ian  l ine in 
the region. Thus,  the logical dividing line between reg ions  would occur  a t  
points on the  shel l  where  an abrupt  discontinuity o r  a rad ica l  change in any 
of the following exists:  (1) geometry;  (2) sect ion o r  m a t e r i a l  p roper t ies ;  
(3)  induced or sur face  loading; (4) t e m p e r a t u r e  distribution; (5) o ther  con- 
siderat ions such as length to  rad ius  magnitudes;  (6) combinations of 
1 through 5. 
called junctions. 
between two types of junction points. 
mathematical  model is joined to  a single o t h e r  region of the s a m e  mathe-  
.natical xxmde'l is terr?ed 3 dizcontinuitv point o r  junctien. 
Junctions where  m o r e  than two she l l  reg ions  m e e t  at  it common point a r e  
called branch points. 
absolurely essent ia l  in t rea t ing  problems where  abrupt discontinuities in 
shell  p roper t ies  (1  and 2 above) occur  to introducta a junction point s ince a 
unique solution procedure is required in such caseb .  For convenience of 
data input or change in gr id  increment  (Section 1.12) ,  f icti t ious-type discon-  
tinuities may  be  intwducod when des i rab le .  

The points at which these  ficti t ious subdivisions occbr  a r e  

The point where  one region of the 
It will be convenient in the p r o g r a m  to differentiate 

(See Scctisn 1. 11. ) 

(See Section 1. 16.)  It s h o d d  bc emphzsized that  i t  is 

Theoretically,  the  l imi t  on t h e  number  of she l l  regions p e r  problem 
is dictated by the storagt. r:aGacity on the t apes  used. Twenty regions have 
been used without diffic y, and it  i s  es t imated  that  the capabili ty for  con- 
s ider ing up to 50 regions is possible.  
points possibi,- : 'kction 2 .7 ) ,  i t  i s  unlikely tha t  such a l a rk"  number of 

With a s t ruc tu ra l  m e s h  of 150 gr id  

regions is necessa ry  in t reat ing even the? m o s t  
problems. f- 

-Le-,--- 

T h e  program code p r o c e s s e s  the region data  in the o r d e r  in which the 
regional data is introduced intr, the input da ta  deck of piinched ca rds .  The 
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f i r s t  region is known as rcgion I ,  the- sccond region, regians 2 ,  e t c . ,  even 
though punched cards do not c a r r y  thcb number dc:sign;rtion of the regions. 
The cornplt*tc data information for ;I particular rcgion must be inputtc!tl 
bt-fore thc subsequcnt rcagion data can bc conaidercd. 
of rt-gionnl data must be consistent with the analytical solution of the problem. 
The regions should bc selected in scqucncc proceeding in a continuous manner 
f rom one boundary to the final boundary. 
branched shell  configurations ( m o r e  than two shel ls  * 'ning) i s  modified 
somewhat in  that data for each branch i s  input up to .fit common branch 
junction point until the next to las t  branch i s  complete>. 
final or closing branch proceeds f rom junction point to the Iinal end 
co.iditions.(See 2. 10.2.) 

The sequence of  input 

The procedure for  handling 

The data for the 

The code value EKK represents  the number of shell  regions selected 
The amount of regional data must coincide for a particular shell problem. 

with the value of EKK. 
delineation for complicated shell  configurations. 

The examples shown below indicate typical regior. 

In Figure 2-1  a five-region shell  configuration is shown where four 
discontinnity junctions have been used to  subdivide the m?thematical  model. 
Junction@ i l lustrates  a discontinuity point where an abrupt change in the 
shell section propert ies  occur.  A discontinuity of slope between the re fer -  
ence surface of two joining shel ls  s i l lustrated by junction @ . 
fictitious subdivisions have been introduced where abrupt changes in load 
distribution occurred. 
increasing 5 or station number and the sequence of data input. 
branched shell  is shown in Figure 2-2. 
i l lustrates the region delineation when two shel ls  of different shapes meet. 
Branch points @ and@ represent  common branch points where m o r e  than 
two regions join. 
Section 2. 10 on junction points. 

At @ and @ 

The a r rows  on Figure 2-1 indicate the direction of 
A six-region 

The first discontinuity point 

This example will be discussed in m o r e  detail in 

2.6 FOURIER COKPONENTS (SUM, ENFO, ENFI, ENFOR, TH'LTA) 

The computer program permits anaiy8i.s of shel ls  auljjected to 
unsymmetric loads using a Four ie r  series technique. 
cribed in Section 1 .7  permi ts  the analysis of complicated 1or;ds by considering 
the individual contribution of each Four i e r  componeut of the Four ie r  s e r i e s  
expansion of the load distribution. 
the Four ie r  components in the appropriate series expression in the 
circumferential  coordinate. 

This approach d e s -  

The total solution i s  obtained by summing 
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+L-- Region9 

Figure 2 -1  

?- 

Ill 

I 

Figure 2-2 

W h e n  treatin5 more than one Fourier component for a shell problem 
the code valse SUM is s e t  to a nonzero value. 
;nrlicator indicdtee the solution will be summed according to the series  
expressions, Equations 1 '  through 24, page 7 .  A negative SUM prints the 
individvsl so!uti.Jn tor each  discrete Fourier harmonic. 

A positive value for the SUM 



It niny be desirable to fes t  the cunvergevce o f  the 1;'ouricr se r i e s  
solution to obtain intermediate pr ints  of partial  Fourier  sunis. This  cayla- 
bility i s  possible using the ZNFOR(1f data region where these inteririudid.ra 
pr ints  art' permissible. For example, if 10 Four ie r  compments  a r e  con- 
s idered.  it might be desirable to print  the summed solut,ons for  the  inst 
three harmonics to compare convergence of results.  

In order  to detr.rmine the value of solution at  circumferential  ( T H E T A )  
loc'itions on the shell, the capability fo r  evaluating the s e r i e s  expressions 
at  d iscrete  THETA \ - d u e s  i s  possible. 
a rnaximum of 10 circumferential  solution printouts. 

This  data region THETA(1) permi ts  

9 . 7  STATIONS I N  REGIONS (EN) 

The machine program achieves a shell  solution bv integration of finite 
difference equations along the meridian or arc length distance of the she l l .  
The meridional coordinate 6 on thcb reference suyface has  the range 0 5 6 s  E 
fo r  the j-th region. 
in the region under consideration is assigned the EN code value. 
stations a r e  equally spaced with the initial point located on the reference 
surface at the beginning of the region designated station 1 ( i  = 1 o r  6 = 0)  znd 
the las t  o r  EN-th station at the end of :he region called station N (i  = N o r  
6 = 6 . ) .  
meri i ional  coordinate assigned to the respective region. The rnaximum 
number of stations permissible  in a region is 150 (minimum 3). 
mput data a r e  specified at stations on the re ference  surface of each region. 

j 
The number of integration points (called stations) lqcated 

T h e  

The numbering of stations proceeds in direction of positive 

The regional 

The length of the finite difference "lump" of shell  is cornputed internal 

This finite difference increment  of integration is defined 
to !he; program f rom the length o r  wrap  distance and the number of stations 
(LN) in the region. 
a s  D E L  in the program and printout. 
finite difference increw-ents are approximately the same from region to region. 

Best  resu l t s  are obtained when the 

The machine running time increases with the number of integration 

This 
As a general  

s teps  considerrd F k r  rdgion. 
dictate the F -.e of t k 4  g:id mesh  o r  number 0,' etations considered. 
comes with experience and how the results are to be used. 
ru12, it i s  recommended that m o r e  integration intervals  be used where rapid 

The type of ehell problem considered should 
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ckange in variables occurs along the length of the shell. Experience with 
the program indicates that conaidering 100 stations i s  probably sufficient 
for engineering type accuracy of the shell solution in most shell regions. 
For extremely long shells ( e .  g.,  cylinders), it may bc necessary to sub- 
divide the shell into more regions in order  to obtain a suitable integratios 
interval. 

2.8 GEQMEI 'RY OF REGIONS (GMI) 

Geometric parametecs must be defined at each station location. The 
sign convention for the curvature parametera, q,, w e  a r e  illustrated as 
follows : . , .  . 

In order to ass is t  the analyst in defining the set of gcometry parameters 
with a minimum number of input parameters,  several options for jlpecific 
classes of geometries are made available. The options are described below 
with their identifying code number (G-VI). 

2.8.1 Cone-Cvlinder ODtion (GMI = 1.0) 

This geometry option may be specified for a complete rang Y f  

cirLular Flates, regrdnal configurations generated by a straight line, e. 6. 
cones, and Cylinders. 
The input p r a m e t e r s  required a r e  defined a s  follows: 

A rr,i.rPrmum of three input palameters is requized. 

1, 3 A l  - -5adial distance from axis of revolution to the first 
station (i = E) of the region 

2. AXL - meridional. length of ahell 

3 .  ANX - angle the generator makes with t!!e axis of revolution 

Figure 2-3 illubtrates tke geometric parameters used in describirg the cone 
cylinder option. Both RA.1 and AXL a r e  positive quantities. The parameter 
ANX ' "  givc,i in degreee and is podtivs clockwire measured from the 
gene;atc ,o the positive X axir ad shown in Figure 2-3* 
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i = N  

' i = N  

1 i = l  

A L / ANX 

Figure 2-3. Cone Cylinder Geometry 

This  option may be specified for a complete range of regimal con- 
figuration generate6 by a circular curve. 
necessary for defibing a sphere-toroid, as shown in Figure 2-4. 

Four input parar., kers are 

I tr IROFF 

Figure 2 -4. Sphere -Toroi r! Geometry 

The input parameters are 

I .  RC - Radiiis of curvature of the ger, :rator 

2. ROFF - O€fset distance measured from axis of revolution 
to the center of meridional curvature 



3. PHI0 - Angular position in degree. of the begiming of a region 
mearured cloc'rrwise po.itive about the center of curvature 
from an axis parallel to the u i r  of revolution 

4. P M N  - Angular position of the end of the region 

2.8.3 Discrete Point Option (CMI = a3.0) 

This option was developed for use on regions where the generator 
cannot be described by one of the other options or where a curved generator 
is given by a set of discrete point.. 
ways the geometry may be supplied to the analya, several variations of 
input data format can be accommodated. 

As a consequence of various possible 

On a positive indicator (CMI = +3 .0 ) ,  the program will set up the 
necessary geometric parameter from the input data which describes the 
generator by discrete radial and dal  distances. 
program a re  EM (number of points given), RIFT (radial distance from axis 
oi revolution at input points), XIFT (axial coordinates of the hput  points). 
The set of R I P T  and XIPT must include the first and last points of the region. 
X I P T  must be given in ascending magnitudes. 
(GMI = -3.0). the coordinates of the diecrete points a r e  given in radial and 
surface or  a rc  length, the surface length coord*hate is input directly in the 
XIPT locations. 

The input quantities to the 

On a negative indicator 

An interyolation routine is used to obtain appropriate geometric 
parameters at station points from the original input values. 
such as curvatures are computed using finite difference forms of the station 
set. 
putations. 
number of points described by  RIFT ar.d XIPT should be at least a s  great a s  
the number of stations. 
changes ir. the generator curve, it will be necessary to input a denser popu 
lation of RIPT and XIPT. 
involved in the least squares and interpolation routines, extreme care must 
be exercised in the use of this option in order to obtain an a.dequate descrip- 
tion of shell geometry. A significant improvement in results is obtained 
if the additional recommendations described below a re  adhered to. 

The parameters 

A least squares method is used to minimize the scatter of these com- 
To hold the e r ro r s  in curvatures to less than 10 percent, the 

For some situations such as locations of major 

(See Figure 2-5. ) Because of the difficulty 

When the meridional and circumferential radi i  of curvatures a re  
available, they can be input at discrete points and curve-fit to give a better 
description of the curvatures. If posrible, it ir  strongly recommended that 
this capability be used since the error. in curvatures a re  reduced con- 
siderably to better control curvature. and lerr input points of the generator 
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EM EM 
XXPT, 4 I RiPTi 

axis  of revolution 
XIPTi 

Figure 2-5 

are  required. 
radius of curvatures RE and Re, respectively (Section 1.3). 
RCURZ values must cozrespond with the points described by RIPT and XIPT. 
This is an optional input to both GMI = +3.0 and GMI = -3.0. When no values 
a re  input at  RCURV and RCURZ locations, the curvatures will be computed 
from the discrete point set of RIFT and XIPT. 

This data is input in the location RCURV and RCURY for 
RCURV and 

2.8.4 Conics Options fGMI = 4.0, 5.0.  *6.0) 

Several options are made available for the conics class of generator. 
Three classes of conics are treated: ellipse (CMI = 4.0). hyperbola 
(CAW = 5 . 0 ) .  and the parabolas (GMI = *6.O). 
conics a re  taken from the standard form (Figure 2-6). 

The parameters for the 

In Figure 2-6, the coordinates XI, Y' are the standard form 
coordinates. The input quantities a re  as follows: 

1. RFF is ,the translatioa distance of X' axis from the axis of 
revolution. 

2. SPNO is  the clockwise positive opening angle from positive X' 
to the first station location. 

3. SPNN is the positive opening angle f rom positive X' to the 
last station location. 



Y' 

GMI = 4.0 

R#F 

directrix 

A 

'(c) parabola 
/ GMI = 6.0 

Y t  
A 

S H N  1 

b 
RFF 

revolution - - 
GMI = - 6 . O  

Figure 1-6 

4. A is the semimajor axis parallel to the axis of revolution for 
the ellipse and hyperbola, A is the distance from the directrix 
to the focus for the parabolas. 

5.  B is the semimajor axis perpendicular to the axis of revoiution. 

2 .9  END CONDITIONS (BCITP, BCIBM) 

Four boundary o r  end conditions must be supplied at each end of a 
shell region. From Section 1.9, these conditions are input in matrix form. 
To simplify the amount of data input a boundary indicator code has been set 
up to permit simple call of boundary support conditions. The value BCITP 
defines the boundary indicator at the 1st or top station (i = 1) of the region 
arld BCIBM the value at the last station (bottom) (i = N). The boundary or  
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end conditions permitted by the code, together with the identifyin3 code 
number and mathematical description, a r e  a s  follows: 

BCfTP or BCIBM 
Code No. 

1 

2 

3 

4 

5 

6 

7 . 8  

9 

10 

0 .  >10 

Type of End Condition 

Free Support 

Roller 

Clamped (Fixed) 

Simple Support 
(I Tinged) 

Symmetrical (or 
Complete)* 

Special 

(to be defined) 

Closed Apex (r  = 0 )  

Branch Point 

Discontinuity Point 

Mathematical Equivalent 

rnE = 0 = u€J '  = 

Read Boundary Matr ices  
Q,A. 

Space for additional 
Bound a r y Cond it ion 

See Section 1.10 for 
conditions 

The identifying boundary matrices for often encountered external 

Space is available in  

Specifying BCITP (or  BCIBM) = 6 

support conditions 1 through 5 and 9 are  internal to the program and can 
be called by stipulating the correct code number. 
code numbere 7 and 8 to put in appropriate boundary condition matrices that 
offer particular interest to the user. 
permits inputting boundary matrices Q, A ,  and @ (See Equation 47) directly 
into the program. 
bouxdaries. spring rupport conditions, applied load o r  displacem2nt.s to 
boundaries. o r  any consistent set of end restraint conditions. 

This option would be used when considering special  

The details 

*Special condition when rhell har 8 plane of rymmetry ahout the normal to 
Use only for axirymmetric loads {e. g. ,  complete the a x i u  of revolution. 

sphere can be trc8ted am hemirphere). 
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of formulating these matrices directly a re  dcscribed .n Section 3.4. 5. 
indicator value when set equal to 0 (or  > lo)  indicates a discontinuity con- 
dition accurring at the particular boundary location. 
automatically employs the appropriate compatibility rslationship ae 
described in Section 1.11. 
junction point (more than two shells coming together), the boundary indicator 
must be  set at 10 and the program will autom.atically set the solution format 
to handle branched configurations. 

The 

The program 

When the endpoint corresponds to a brqnthed 

2. 10 JUNCTIONS (GPSI, GECX, PD, MD, =IO) 

A junction occurs when one region of the mathematical model i s  joined 
to one. two, o r  three regions of the same mathematical model. It will be 
convenient to differentiate between two types of junction points. 
description of discontinuity and branch type junction points is given in the 
following paragraphs. Each type requires a different mode of solution in the 
computer program (Section 1.11 and 1.16). 
description of external line loads and moments that can be applied at junction 
points. 

A detailed 

Also discussed below is a 

2. 10.1 Discontinuity Junction 

By our definition, a discontinuity junction occurs at a point where one 
region of the mathematical model i s  joined to anothcr single region of the 
same mathematical model. Discontinuity junctions a r e  usually selected 
where abrupt discontinuities in shell properties o r  loads occur. 
fictitious type discontinuities a r e  sometimes introduced where change in 
finite difference grid interval is described o r  for  reasons of convenience of 
inputting data. 
accommodated by the ->rogram a r e  illustrated by considering in detail the 
example shown in Figure 2-7. 

fiowever, 

Types of abrupt discontinuities in shell properties that can be 

Junction@( Figure 2 -?a) illustrates a discontinity point occurring 
between regions I1 and III due to an abrupt angle change in reference surface 
caused by two shells of different shape joining a t  a common point. The 
angie 9 is  coded GPSI in the program and measures  the change in slope, 
i. e . ,  the angle between the normals to the region meridians at the junction 
point. The discontinuity angle CPSI is referred to the end of the region, 
e. g . ,  the 3, in Figure 2-7a would be part  oi  the input data of region 11. The 
discontinuity junction @ characterizes a discontinuity point where an abrupt 
change in the shell cross-  sectional (including material) properties occurs. 
The  program will also accommodate eccentric discontinuities, i. e. , discon- 
tinuities where reference suriaces at a discontinuity junction do not intersect 
at a common point ( ~ e e  Figure 2-7b). The program automatically compen- 
sates for the couple generated by in-plane membrane forces in  each region 
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-. . igure 2-?a. Slope Discontinuity 
(Discontinuity Jrtnction 2 of 

Figure 2-1) 

not being coincident with each other. 

Regiori UI 

m 

Figure 2-7b. Eccentric Diocontinuity 
(Junction 1 of Figure 2-1) 

The eccentricity distance E,, 
(Figure 2-7b) is coded GECX and represents the eccentricity of reference 
surfaces measured along the radius of curvature ,i the end point of a region 
le.g., region II of Figure 2-7b). A positive value of E,, corresponds to an 
abrupt increase in the radius of a paraliel c i rc le  a s  one proceeds in the 
direction of increasing 6 and station numbers. This positive direction is 
shown by directional arrows in Figure 2-7. Foilowing a similar procedure 
as described above, fictitiouo discontinuities may be introduced at p i n t s  
where abrupt variation of load occur or where change in finite difference 
grid increment ia desired. 

The existence of a discontinuity junction at the endpoint of a region i s  
specified by the end condition indicator BCITP (or  BCIBM). For a discon- 
tinuity point, the indication values BCI’i’P (or BCIBM) can be set (:qual to 
zerg o r  > ? 3 .  The printout for a discontinuity junction i s  given by the value 
1 x 1010. 
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To illustrate the use of end condition indicators and sequence of 
data input, the following table has been prepared for sample problem shown 
in Figure 2-7: 

L 

Boundary st i = 1 Boundary at i = N 
Region (BCITP) (BCXBM) 

I 1 G 
I1 0 0 
111 0 0 
IV 0 0 
v 0 3 

Table 2.1 

CPSI GECX 

0 ECC 
20 = 0 

0 0 
0 0 
0 0 

2. 10,2 Branch Junction 

A branch p i n t  occurs when one region oi a mathematical model is 
joined to two o r  three regions of the same mathematical model. 
will consider up to four shell regions or branches meeting at a common 
junttior, point. In tht: ana1ys.s of branched snells. a precise order must be 
followed in the inputting of data information. 
exemplified by a typical branched configuration illustrated in Figure 2 -2  on 
page 4 6 .  The numbers on each branch identity the regions cr branches and 
inciicate the sequence of data bput for the regicaa comprising the niultishell 
configrAration. 
the ne:& regiopal information is considered. The -: egions J-I11 are referred 
to a s  startinp; branchee, the last regions are characterized by the fact that 
the last  or N-th station in that region cccurs  at the common junction point. 
A closing branch has its first statio.1 (i = 1; at the branch point. 
and clading branches must be selected in consietent form with the numerical 
solution procedure (Figure 2-2). 
at the endpoints of a region i s  designated by use of the end condition indicator 
BCITP (BCIBM) set equal to 10. 

T t e  program 

This order  can best be 

All required data €or a particular region must be input before 

The starting 

The existence of a branch junction oc-urring 

Th 5 program does not automatically handle eccentricities in reference 
surfaces occurring at branch point as was done at a discontinuity junction. 
However, 9ince line moments can be applied at a junction, it is possible to 
account for the unbalance moment occurring at a branch point due to 
eccentricities in an approximate manner. This is accomplished by running 
a multibranch shell case (without eccentricity effects included) and calcula- 
ting by hand the unbalance moment due to the couple gensrated by the 
in-plane membrane forces  Ne ( J Qe contribution) in each region being 1 



dieplacod from each other. 
cbsternally applied line mom;.?t at t h e  junction and rerunning the bame case 
in the program will yielc* 3 corrected solution. 
can be repeated until the resulting e r ro r  i s  a s  small as dcsircd. 
body diagrams ar-e hel?ful in setting up this rnoG,:l, 

Applying the calcdated unbalance moment a s  an 

This trial-and-error process 
Use of f ree  

I 
0 

10 
I 10 

10 
10 
9 

The procedure for  se+ting up a branched coniiguiatisn in the program 
In can be illustrated by consideration of the examfile shown in Figure 2-2. 

Figure 2-2. the first iunction is a discontinuity point with@ and@ belng 
branched points. 
e or  increasing station number for the respective regions. 
would be starting branches and IV the closing branch associated with 
junction@, similzrly, IV and V starting and VIL closing branches character- 
izing junction@. 
discontinuity conditions can best be illustrated by Table 2-2. 

The arrows on the diagram indicate dirkcticms of increasing 
Regions I1 and 111 

The sequence of input of data with appropriate end and 

Table 2 .2  

Region I BCITP 1 BCIBM 

I 
I1 
III 
IV 
V 
VI 

9 
0 
3 

10 
1 

10 

G PSI 

0 
315" 

0 
0 

60 o 

0 

I CECX 

0 
Not po s s ible 
Not possible 
Not po s s ible 
Not possible 
Not po s s ibl e 

2.10.3 Discontinuity Loads - 
The effects of externally applied line loads and moments on a shell 

response can be determined using the program. 
coded P D  and moment MD a re  applied at junction points on the mathematical 
model. If no geometrical discontinuity exists, a fictitious discontinuity is 
introduced to incorporate the line load and moment. The program will per- 
mit a maximum of 11 Fourier components of PD and MD to be applied to the 
program. The value of PSI0 ( in  degrees) is the measured angle between the 
Concentrated load direction and the normal to the closing branch at the 
common branch point. The positive magnitude of P D  (FD) and MD (MD) is 
shown in Figure 2-8. For a branched configuration, the load and moment 
value occurring at a junction can be entered with the regional data of any 
(one only) of the starting branches; for example, the information could be 
supplied with data for  either of regions I, II, o r  III. 
the discontinuity loads would. of course, be supplied with the region preceding 
the junction point. 

The concentrated line load 

At a discontinuity point, 



Figure 2-8 

2 . 1 1  PRESSURE LOADS (PILD, PFETB, PTHTB, PNTB) 

The values of surface prerrure acting on a r s ~ i o n  are rupplied at each 
station of the region. 
prerrure is rhown in Figure 1.2d In itr simplified form, internal preseurc 
has a poritive value and external prerrure a negative value. The normal q 
and tangential lord8 qt  a rc  arrumed to be rymmetrical about 9 = 0 and 
antisymmetrical for crranmfersatial load qee 

The r i p  convention for poritive and negative values of 

(See Section 1.7. ) 

To reduce the amount of d8ta load information input into the program 
and to oimpiiiy the handling of unrymnletric loado, a prerrure load indicator 
has been introduced. Thir indicator har the coded value PILD and permit8 
different input format for variour typer of load information. The dimenrional 
arrays PFETB, PTHTB, PNTB are w e d  for inputting tangential, circum- 
ferential, 8nd normal. loadr, rerpectively. There arrayr,  referred to a@ load 
tablor, are dfmenrional for 200 information bitr, Tha detailed prccedurc or  
table setup is gfv.en in Section 3.4.7, p8ge 90. 

When loadr (or mora rpecificrJly F o u r b r  codficientr of 10.d) are  
canrtant over the region, i, e.,  do rpot vary ia the meridional coorainatc 
tho PILD indicator ir ret equal to one. In thir care,  only one value of 
prarruro lo8d data i r  required for oach Fourior harmonic (ENF) in erclr loi7d 
tabla. For tho care of uarymmetric loadr that vary maridionnlly, thr- 
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-411 prt’ssurc load data a re  inputted in dimenL_ mal form (i. e. , in  units 
oi P/ 1.1 
tilakc coeiiicittnts nondimensional (Section 1. 7). 

;ind t1w program au tomat i ca~y  performs appropriate operations to 

2 . 1 2  TEhlPERATURE DISTRIBUTIONS (TBOT, TTOP, I ‘TP, TIBT) 

The temperature of the outer surface, each interface (multilayer 
shzl ls) .  and inner surface must be rupplied at  each station of each region. 
The  temperature data of inner and outer surfaces a r e  inputted in a simi7 t 

xnanncr to pressure loads (see Section 3.4.7). Temperature indicators 
coded TIRT and TITP for  inner and outer surfaces, respectively, a r e  
utilized with TBOT and TTOP representing table a r r ays  for inner and outer 
surface ternpe ratur e value 8 .  

Temperature distributions acro8s the shell thickness a r e  usually 
derived f rom solution of the heat transfer problem. 
only  shell structural problems and does not make any heat transfer calcula- 
tions. However, it does use the given temperature distribution to calculate 
s t resses  and deflection8 due to thermal influences in the shell. 
temperature must be supplied at  each face, there will be one more tempera- 
ture value at each station than there a re  layers  in the region. The outer and 
inner surface temperatures a r e  rrupplied using procedures described above. 
The internal interface temperatures a re  supplied using a temperature 
gradient table for inputting interface temperatures at discrete meridional 
stations. 
(Section 2 .13) .  
;)grcentage of the total differential between top and bottom surface tempera- 
tures. 
E>:OGR (10 maximum), with GSTA being station values at which gradients 
arc  supplied. The gradientr a r e  supplied at  internal interfaces and CSTA 
stations counting from first interface beyond the inner aarfacc to thc. last 
interface before the outer surface of the shell. 

The program handles 

Since the 

An irterface defines the surface between two shell layers 
The gradient value at each interface is prescribed a s  a 

The number of gradient rtations conoidered per region is coded 
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The teniperaturc input data is not curve-fitted directly; in8te.d. the 
yrogrmir calculates the thermal load ENT anti moment EMT at data input 
stations and curve-fits using CODIMA to give intermediate station values. 

2.13 htl1LTILAY ER SHELLS (ELAY. ENMAT, E.UAT) 

Thc coniputcr program permits the analysis of multilayer shell con- 
iipurations. 
Lwndcd layers can be analyzed. 
i s  thc number of layers in the region. 
nuiribpred consccutively starting from the inner surface . (See Section 2.4. ) 
.iz rcpion may consist of various layers of different materials each material 
h;\vine different clastic properties. 
assumed o be divided into imaginary layers for purposes of determining 
St rCsS internal to the outside and inside surfaces of the region or handling 
z.>Z:im-ar temperature distributions across the thickness. The code value 
EXXIAT indicates the number of different materials considered. for the 
problem with three being the maximum. 
describes the material for each layer. 
n \ ~ i ~ ; % ~ i ~ ?  in sequence starting from inner layer and proceeding to outer 
layer. 
for each layer. 
shown in Figure 2-9.  
The sequence of data far EMAT, for example, would be shown 1.2, 1 , 3 ,  i. e . ,  
material 1 ir first and'tiiird l a y e r s ,  material 2 in second layer, third 
material in fourth layer .  

Laminated shcll sections having as many as s a  intimately 
Thr" value assigned to the variable ELAY 

For idenzification, the layers &re 

A region of one material may be 

The material layer indicator EMAT 
The material used in a layer a re  

There arc six possible values in the EMAT data locations, i. e. , one 
A s  aa example, let us consider the four-layer s!iel.l section 

The layer i zntificaiion is given in Roman numerals. 

t 
I 

I 

ELAY = 4 
ENMAT = 3 
EMAT = 1, 2, ?, 3 

Figure 2-9 ,  Layer Shell 

- 6Q - 



NORTH A M t R I C A N  AVIATIOCI 

ln g?cncr;tl. tht- plastic propcrtics for structural matttrial dctpc!nrl on t l i c  
tt-nip-ritturt8 o f  t l i c  ni;itcrial. In thc coniputcr program, t h e  material 
propert i c u .  modulus o f  clasticity (Young' s modulus). and coofficicmt o: 
tlicrnial csy;tnaion arc- pcrriiittcd to vary a s  a function of tc?nipc!raturct in  tllc: 
niatetial. 
thc prctgraiii in the form of tables for each individual material. 
variablcs KNEl and ENAl dcscribt. the number of valucs of Young's riic~rlulus 
.tnd wr*fficic-nt of tlieriiial expansions. rcspectivcly, t'lat will bc i~scrt l  in t h c  
t.iblt-s tor tlic first material. 
Iurcs  o f  which the Y h l l  (Young's modulas) values a re  given in the tables 
for tlic f i rs t  material. TMPAl are  temperature values at which the ALE'I 
tlwrnial cspnnsion coefficients are  given. In the second material, similar 
,-mIc instructions a re  given L y  ENE2, TMPE2, YM2, ENA2, TMPAZ. ALF2 
and so on for the third material.) With the temperature at the layer intcr- 
iaccs and surfaces known, the values of Young's modulus and coefficient 
ai thermal expansion a re  determined for each material at each interface by 
CODI3IA curve-fit of the material proper:y tables. The material property 
variation through each layer is obtained by linear interpolation. The value 
of Poisson's ratio is assumed constant in each layer and defined in the 
regional input data a s  the quantity POIS (six data locations possible, one per 
layer ) .  The inaccuracies introduced by assuming a constant value of 
Poisson's ratio for each layer in a region a r e  small and this assumption 
greatly simplifies the equations of the program. 
properties must be known before the stiffness properties and thermal loads 
can be determined at each statisu on the shell. 

l'hc material propertics ve r sus  tcmpcraturc data a rc  rc:acl into 
The 

Thc code value TMPEI represents tcn~pcra-  

The distribution of material 

2.15 STIFFNESS PROPERTIES (EIFH, ENOTH, THSTA, 

The stiffness properties of the shell can be evaluated when the material 

The procedure for input of material 
prcperties and shell thicknesses a re  known. 
be supplied at each station in the region. 
pzoperty data is given in Section 2.14. For multilayer shells, the program 
permits the input of shell layer thicknesses in array form and automatically 
curve-fits data to ascertain thicknesses at intermediate station points. For 
the case of constant thicknesses, setting the variable EIFH to + I  permits th2 
use of a simplified data format. For variable thicknesser, EIFH is set to - 1  
to permit reading of layer thickness tables. 
number of thickness stations given with THSTA being the aetive station 
number at which thicknerres are supplied (20 maximum). 
number must be the same for all layers. 
qcantity TH in order of layerd thicknerses per station, e. g.,  for a five- 
layer shell, the thickness of each layer is read at a specific'station before 

The stiffness parameters must 

The quantity ENOTH sets the 

The station 
The thicknesses a re  read in by the 
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p r w d i n p  to thv ncxt station. 
description outlind in Scction 2.13. i. c. , first l r y c r  at inner surfacc: prc- 
wding in orctcr t o  tlii- last layc-r on  the? outcr surfacc. 

'l'hc order o f  layer input is coneistcnt with 

' I ' l 1 ~  cross-scctional propcbrtics arc cvaiuatcd from Equations 33 
and ;=I. It i s  aosun1ed that tlrc niatcrial propcrtics (and tcmpcrature distri- 
hution) varit*s lincarly across cach layer. 
Irtrkcn up into ;I suin of linear functions of 6 and the integrals a r c  cvaluatcxl 
nunicrit*.atly bascd on valucs of material properties at laycr and branching 
suriac.cs. A similar proccdurc is used in evaluating thc thermal load and 
naorricnt csprcssion dcscribcd by Equations 35 and 36. 

Thus, all integrands will  bc 

For the case of constant stiffness properties, the extensional (D) and 
ilcsural (EK) stiffncss can be inputted directly into the program by use of 
t h  I-1S indicator discussed in Section 3.4.6. 

2.16 INTERNAL SPRING SUPPORT (GSPRL, GUK, GV.K, GWK, GEMK) 

The program will allow the consideration of a support spricg at any 
internal station in a region. 
by value GSPRL. 
sircuniierential, transverse, and rotational spring supports a r e  given by the 
symbols GTJK, GVK, GWK, GEMK. This capability would aid in considering 
shell structures which have internal elastic restraints such a s  a circwn- 
ierential ring o r  other type of elastic support conditions. The program with 
minor modifications can be extended to handle more internal support points 
if de sired . 

The station location of the spring is specified 
The values of spring constants for the meridional, 

2.17 REFERENCE QUANTITIES (SIGO, EO, HO, Ai)) 

SIGO, EO, HO, and A 0  represent reference stress.  Young's modulus, 
thickncrr, and length quantities intrnduced in the analyoir to provide non- 
dimenrional Fourier coefficients of comparable mrgnituder . 
Section 1.3.5.) It ir  ururlly most conveoient to set the value of these 
quantities equal to one. 

(See 

2.18 GRAPHICAL PLOTS (PIXI) 

This is a program option permitting graphical plottizg of results 
Nonzero values of PIX1 will the Stromberg Carlron automatic plotter. 

plots. If no graph8 desired ret PIXI = 0. 

using 
give 
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2.19 SPECIAL INDICATORS {EX, PTHI, PFLAG, STRI) 

There are several indicators in the program that yield certain features 
in the program that cannot be classified completely under the paragraph 
d e s c r iption pr e 8ented previously . 

The progrrm will permit the stacking of problem8 ao that more than 
one problem can be run with a job submittal. 
problems can be stacked. 
repetition of data when ~imi la r  problems are used. A PTHI value equal to 
zero indic8te8 a normal program path. 
of the geometry subroutine with the shell geometry remaining identical to the 
preceding case. 
preceding case but permits variation of surface loads. 

Theoretically, any number of 
The indicator PTHI is used to eliminate the 

hsi t ive PTm values permit skipping 

A negative value of PTHI retains all shell properties from 

The PFLAG indicator permits the printing of all input data when the 
value is set to nonzero. 
information of a diagnostic type. 

In addition, a negative PFLAG will yield print 

The quantity STRI indicates the layer at wbich a second value of stress 
The value of stress at the b e r  surface of across the thickness is desired. 

the specified'layer is printed. 
stress at the outer surface of the shell. 

Zero value of STRI automatically gives the 

The EX indicator is an option formulated to simplify data when running 
cases with constant loads and section properties are considered. 
option is invaluable in running simple check cases. 
of the EX symbol is given in Section 3.4.6. 

This 
The details on this use 

2.20 CURVE FITTING 

As discussed in previous sections, t h e  shell parameters and loads are 
curve-fitted using the controlled deviation Interpolation method concept 
(CODIMA). CODIMA basically involve8 f i t t i r  .g a second-degree polynomial 
through three successive points in the data f eld. Thus, the curve passes 
exactly through the supplied input points. T:ie detailed characteristics of 
CODIMA are outlined in Section 3.7.3 ;u:d will not be repeated here. 
CODIMA was selected because it offers ea accurate, efficient, and reliable 
technique for fitting data. As contrarted to '*least square" techniquar, it 
does not exhibit ill behavior in treating even the most complex of functions. 
Of most importance, CODIMA fits automarCicaUy and does not require 
additional input construction to be rupplied by the user. 
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1. 

3 
C .  

3.  

4. 

5 .  

6 .  

'l'hc user should always check the output data f rom the prograrrl 
to scc' i f  it corresponds to input entered. In using curve-fit 
tccliniques (CODIMA) it may be desirable to input more data 
than absolutcly necessary to increase the accuracy of represen- 
tative results. 

Sonic difficulty may be encountered in selecting a mathematical 
model par t icdar ly  when treating branching configurations; for 
example, some ambiguity i s  discovered in the definition of 
thickness for each shell region in the junction region. Careful 
study of Section 2.10.3 with the exercise of good engineering 
judgment should permit the selection of an adequate engineering 
model. 

The user  should be reminded that shell theory is two-dimensional 
and input parameters and results should be interpreted 
according:y. 
the mathematical model selected. 

The results, of couree, will only be as good as 

The discrete point option (GMI = 3.0) should be used only when the 
shell geometry cannot be described by the other geometry options. 
If thiroptioa ie used, it is strongly recommended that the 
capability for input of radius of curvature information be utilized. 
A dense population of input data must be supplied when using this 
option in order  to guarantee an accurate geometrical 
rcpr esentation. 

Fo r  multiregion configurations, extre-me ca re  must be exercised 
to ensure that the geometrical location of a junction point i s  matched 
between regions. In addition, best results a r e  obtained i f  the finite 
difference intervals a r e  selected to be approximately equal on each 
region. 

Some difficulty may be encountered in treating problems having 
apex-apex or free-free boundary conditions. Rigid body type 
motion may occur when data are not input precisely. 
problems where some "drift" occurs, it may be possible to supply 
a nonforce-inducing spring to the shell in order to obtain a zcro 
reference point for  displacements, 

F o r  some 
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111. DETAILED USE OF TI1E PH<)(;ltAM 

3 .  1 INlHODUCTfON 

'I'ht* Shcll of Rcvolution Computer Program is written almost entircly 
i n  F L > R T R . ~ N  IV and m a k e s  use of the overlay feature of that language. Thf: 
i*xt-t*ption is found in the utility subroutine CRTG, described in Section 3 .  7. 5. 

Tht- program has been checked out in NAASYS, the N A A  adaption of the  
I V l l  7 0 Q 0 ~ 7 O ? - I  IBSYS/IBJOB system and 
shkwn ir the load map, pages 67 to 73, inclusive, this section. 

3s the N A A S Y S  library routines 

The N.4.1SYS input tape is 'UNITOS, I the output tape is 'UNIT06, ' and 
the s y s t e m  CRT file i s  'UNIT16. ' In addition to these files, the program uses 
;, 4, 7,  8 ,  9,  10, 11, 12, and 13 as scratch tapes or  for overlay storage 
d u r i n g  esecution. N A A S Y S  itself, is stored on 'UNITOl. 

The program is made up of an executive program and eight l inks,  five 

The name of the main program in each link and a 
oi \vhich a re  called by the executive program, and the other three by the 
D-ATLNE; subroutine. 
&scription of its use follows. 

Link No. 

0 

- 

1 

2 

Name 

EXECUTIVE 

DATLNK 

GEOM 

3urpose 

Reads the general data, DA, and controls the 
flow of execution of the other links. 

Acts as a subexecutive program to control 
GEOM, DATLDS, and DATLYR, the subroutines 
that set  up regional dcta. 
data, SDA. Prints Section and Material 
Propertier and Loads. 

Also reads special 

~~ 

Reads geometry parameters/  region. Calcu- 
lates DEL, R, X, WFE, WTH, GAMA, and 
RHO. (See program nomenclature, Section 
3. 10. ) Prints all  geometry input and calculated 
values. 
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1. ink No. 

4 

4 

5 PANDX 

Name 

DAT 1.1)s 

DATLY R 

I 

3.2 DECK SET-UP 

P urpo B e  
~ 

Reads pressure loads and temperatures for the 
inncr and outer faces/ region, DLD. Makes 
pressure dimensionless and, depetding on 
indicator, sends a constant, curve-fits. or 
Fourier sums for values at each meridional 
station. 
use in DATLYR. 

Sets up temperatures a t  20 stations for  
Some data prints on indicator. 

Reads section and material properties data, 
DAL/region. Sets up D, EK, ENT, EMT, E l ,  
T, A L F  at  a l l  meridional stations. (The f i rs t  
four mentioned a r e  made dimensionless. ) Some 
data prints on indicator. 

Forms the P and X matrices  of Equations 74 and 
75 (Section 1. 13) needed in the solution of the 
difference equations. 

Uses the P and X matrices from link 5 to form 
the solution matrix, z. (Equations 76 and 77, 
Section 1. 13) Computes the current Fourier 
component for the bending moments, transverse 
shear forces, membrane forces, and s t resses .  

Performs the Fourier summing for unsymmet- 
rical loading conditions. Pr ints  results. Sets 
up tapes and indicators for next Fourier 
component. 

Plots shell geometry, displacements and other 
results from link 6lregion. 
printed for all THETA values but a r e  plotted 
for just the first THETA. ) 

(Results a r e  

In Figure 3-1 we have shown the set,.tp of the column binary program 
deck, with the necessary control card8 for each link. 

The $IBJOB, $ORIGIN, and $DATA cards a r e  single control cards. 
The circled numbers found on the first two control cards mentioned indicate 
the order in which they, plus the associated decks of that link, should bc 
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Additi011.11 control cards preceding the $IBJOB card are likely to vary 
sotiic\\-hat \\ itli tlic installation. An IBM systems handbook should be 
i cb tas ult ed . 

Additional control cards used a t  S&ID 

3.3 PROGRAM FLOW DESCRIPTION 

An overall flow diagram of the paths between the EXECUTIVE program 
a n a  the first-level subroutines, and between rhe subroutine DATLNK and its 
second-level subroutines, is included in Figure 3-2. 

A detailed flow diagram of each of these major control t)-pe routines, 
i. e., EXECUTIVE and DATLNK, is also included in Figures 3-3 and 3-4, 
re spec t ive 1 y. 

Many comments cards have been included in the listings of the other 
subroutines to aid in understanding their flow. 
through 273. ) 

(See Appendix IIIA, pages 181 

3.4  INPUT DATA FaRMAT 

3.4. 1 Introduction - 
Two types of data a re  ai:tered in the program: (1) general data that 

is read by the EXECUTIVE program 2nd (2) regicmal data that is controlled 
by DATLNK. Depending on the values entered for the indicators PTHI (see 
DA data, Section 3.4.4) and EX (see SDA data, Section 3.4.6),  the DATLNK 
subroutine wi l l  call o r  omit calling GEOM, DECRD(SDA), DATLOS, and 
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Figure 3.2. Program Flow 
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Dhrl ' l .YR.  These latter four subroutines a r e  cycled per region. 
explanation of the data for  each routine, together with sample data sheets, is  
included in Sections 3. 4 . 4  through 3. 4. 9. 

.A full 

Figure 3-5 shows the possible flow between the various data reading 
subroutines. 

3 . 4 . 2  DECRD Subroutine 

A11 data, with the exception of the  three title cards, i s  read by means 
of the DECRD subroutine, available on the N A A  library tape. 

This routine provides the facility for reading a variable number of 
pieces of floating point data into specified elements of an array;  these 
elements may be in  either sequential o r  nonconsecutive locations. 
information specified i s  actually read into storage. 

Only the 

/ '  

3 ' 3 

The fixed point number (index) in the first field on each card defines 
the position of the first piece of data on the card. 
piece of data wil l  be stored in the f i rs t  location reserved for the array; if it 
i s  16, the first word wil l  be placed in the sixteenth position, etc. 
rempining fields on each card contain information for the successive locations 
of the array.  If one o r  more fields are left blank, no information i s  read into 
the location8 corresponding to these fields; the information already in these 
locations is unaltered. 

If the index is 1, the f i r s t  

The 

The sample data sheets shown in  Section 3.6.3 have six fields of 
12-card columne each and an identification field of eight columns for  sorting 
purposes. 
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Figure 3, 5. Flow Chart for D e r  Readin8 



a. 

be 

C. 

d. 

e. 

The index must be written to the extreme right of the first  field; 
it  tnay not be zero or blank (no decimal point). 

The programmer should keep in mind the way in which FORTRAN 
stores arrays having double or triple subscripts, e.g. A ( l ,  1). 
A(2 ,1 ) ,  A(3,  I ) ,  A ( 1 , 2 ) ,  A(& 21, etc. 

The floating point (REAL) data chould be entered with a decimal 
point (anywhere in the field) and an exponent, when necessary, 
written to the extreme right of the field and precsded by a I t '  or 
1 - 1 .  

Reading data is concluded by placing a negative sign in c ~ l n m n  1 
of the last card to be read. 

Zcro should always be entered as '0. '. A '-0. ' o r  I .  0' will be 
recognized as a blank. 

ERROR indication: If the index is zero o r  blank, the comment 
"****BAD INDEX ON 'DECRD CARD-'! wil l  be printed, followed by a printout 
of the columns 1 -80 of the defective card. The job will be terminated. 

If the data for the a r r ay  in the CALL statement have been completely 
read and no negative sign has been encountered in column 1 of last card read, 
data intended for subsequent CALL'S  Nil1 be read into the incorrect array.  
When there a r e  no dcta cards  to satisfy the appetite of a CALL DECRD 
statement, the job wi l l  terminate with an end of file tape 5 designation, a s  
shown be low. 

f R A C E @ A C K  CALLS I N  R E V E R S E  OWOtRa 

CALLING 
R C U f  INE 

1FN OP ABSOLUTE 
L INE N3. LCC AT I C Y  

333  

13 

20471 

31632 

l430R 17 04635 

USER MESSAGE 1 4 1  

€YO C f  F I L E  R E A D I N G  UNIT05 

EXECUTIOF( EhDEO. 
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Data decks s%ould be stacked CLE followr: 

1. Tbrcc cards (72 columns each) of title data 

2, DA, general shell data. read by the EXECUTIVE program 

3, GDA, geometry data, read by the GEOM rubroutha 

4. SDA, special data carer, read in DATLNK subroutine 

5. DLD, loads data, read in DATLOS rubroutine 

6.  DAL, section properties data, read in DATLYR 

With the exception of the three title carcir, eachgroup of data listed 
above should have a mbur sign in crolumn 1 of the h s t  card. Groups three 
through six are repeated for add!#md oagioam. Remember that some 
portions may be omitted due tothe values of indicators Ex or PTfn. (Set 
flow chart, Figure 34, Ssctian 3.4.1.)  

3 .4 .4  Title Cards and Caxl DECRD (DA) 

Thrsa titb cads fbrm the first three cards of any data deck for each 
case. Tbeae cas& pr+ wsfui in identifying tire run rrt a later date. They 
may ilrclwh 8 pmbbrn dercriptioa, khe date of the run, a rufercace. 
etc. 

The# cnrdr mry. not be omitted, but they may be blank, if  desired. 
If the c s r i h - a ~  brgWm, tBt eavor bdication from D E G R O W  occur for a 
multiple casu rtgb, er 
designation ta8 ~mpbkeci in Gsctioa 3.4.2) provided h M deW fat *e case 
was three cor& OF lap. 

job wilt terminate witb an end of f ib trplb 5 



,t- THETA 

Reference f~treir (a,) 

Enitial Fourier component (a) 

Subreqwnt Fourier compaaclnts (19 mors) 

ENFX, EWOR, and THETA valuer mua$ k read €or each C I H .  Mti)' 
through DA(9) are rot to wro Wora nuwfb fbrt care &ta but, for 
multiple caie rumo theywill r+kh theft rrfrr+rr arPt.80 &aged By the 
p rog ramma t . 



* 
c 

5 

1 

EN 

PFLAG 

Ikrcriptioa rad Cornmento 



-. 
1 

i 2  

15  

lo 

17 

15 

16 

I? 

18 

-- 

19 

20 

_. .- 

G V  K 

GW ii 

GEMK 

ANX 

RC 

PHIN 

WB 

EM 

RIPT 

&*scription .uwl (;orirrtwntn 
I- -_ ___--_ -- ~ _ - -  --- ------_.-- - 

I#ttcrwtiawity in slqrpt? at the PMI uf the? rcsgion (r1t:;:rc.c.s) 
( ~ w  pigurrb 2. 1 $ 
Ecwnt ricity af re fcrancc surface at n tl i  scontinui t y  
point (I  - N) (See Section 2.10) 

Stsation frrcation of internai support spring!, anc per 
region 

Spring constant.. meridional direction 

Sp r iag constalbt , ci rcumfe rent ia 1 

Spring constant, normal to shel l  

Spring c0psfi)llf. rotational 

- - I___d-_- - - - - -  - - - - - 

- - 

- 

When GMI -= 1-0; see Section 2.8-1 . 

Radial distance from axis of revolution to station 1 (L) 

Meridional 1engt;h of shell (L) 
- 

Ap(Eltc the generator makce with the axis of revolution 
4dQg=-) 

When GMI = 2.0; see Section 2.8-2 

Radius of curvature of the generator (L) 

Of€.et distance measured from axis of tevolution to 
cenbr of rneridicDlla1 curvature (L) 

tauial opening angle from vertical axis (degrees) 

Final ope- -le from vertical axis (degrees) 



DECRD 
W e x  Name 

XfPT 

BCURV 

RCURZ 

R F F  

170 

Dercription and Comments 

Mocfete &a1 or vettic81 distances (or arc ~ength8) 

Meridional radii of curvrturee 

Circumferential radii of curvaturte 

GMI = 4.0, 5.0; see Section 2.8.4 

Offaet diatonce from u i s  of revolution to the parallel 
coordinate of the standard form 

320 

A 

B 

%FlF 

SEW0 

470 

Semimajor a d s  parallel to the axis of revolution 

Semimajor a r i a  perpendicular to the axis of revolution 

GMI = 

Offset distance from axis of revolution to the parallel 
coordimate of the crtandard form 

Clocltwiss positive openi-yf from the poaitive vertical 
standard form coordinate to the first ata#oar (degrees) 

0; oee Section 2.80 4 

7% 

A 

398 

Distance from ttse directrix to the foctu, positive "tn 
po.itive dirscNon ob the .toadrrd form 

880 

7% 

797 

798 

799 

Clockwise pocritive opening angle fromtho positive -* I vertical standard form coordinate to the first station 1 (degrees) 
I 

~ 

Clockwise positive opening angle framthe positive 
spNN I vertical -d form coodinate to the last station 

Clockwise positive opsp~se -le from the positive 
vertical standard form coordinate to last station - I  (degrees) 



.- 

tr2.J 

N.1tnc hscript ion and Comtncntr 

EMIS 

EAANI 

E M 3  

mu5 

Utagonal terms uf force b o w i a r y  matrix m) (i 1 1 or 
tup of uhcll) 

1)iagon;rl term. of displacomont h d r y  matrix (A), 
i = l  

Cuitririn b&ry matrices 0, top of upen shell 
(i = I); dimeas€oned for 20 Fourier cumponttntr of 
boundary force or displacement 

Like EMIX at i = N (or bottom boundary) 

Like EM3X at i = N (bottom boundary) 

Like EM5X at i = N mrn bwwhry) 

c 

3.4. o Call DECRD (SDA) 

The SDA data array is set to mwo -re tba fhrt case a d  f€r& region 
data are read. SIllCceediag regioru er case8 bra jm* tbe T, ENT, ESaT, 
PS, PFE, amd PTH arrays sb& Ex &8 rwt W mro ea tba 8 e c 4  prrs of 
7n unsymmetrical load cam. AU @bet Brtr wil l  remain tm~hang@ frarxli &e 
preceding region d e 8 6  by progrrmmcr. ff *re are no changes, 
one data card (e& an inbs rtirnbsr) mu& be read to 88tirfy the call DECRD 
(SD.4) rtatemcnt. 

DEGRD 
w e %  

1 Ex 



Name 

- t- 1. - constant sectbn propertien rad tarnpcrcr*.clEa 
loads. One valuu is  entered for El ,  POT, CW& 
ALF, and T. Values for 0, EK, EMT and 
are set by Equations 33 thpoqh 36. 

VaSues may be read for I) and EIC by entering the 
data flag 1. E t 10 in SDA (26) a d  the I) and EK 
values in SDA (27) and SDA (i??), reepectively. 
The program rnuitiplieq bgthe appropriate 
feference cdficiantr . 

= t 2. - conmtant pressure loads, QO temperacure 
loads. The Fourier component for PN, PFE 
and PTH are entered as data. The values are 
multiplied by the reference coefficients and 
stored for EN stations. 

The foUowhg data are read directly into the SDA array only when E X  
i s  nonzero, 8 x c ~ o n s  noted. 

DECRD 
Index 

25 

26 

176 

326 

476 

626 

776 

92 Q 

Name 

m 
0 

EK 

EST 

EMT 

PFE 

PTH 

PN 

Description and Commentr 

Poisson's ratio (v). Not entered for EX = +2. 

Membrane stiffness (bE&). Not esbred for positive 
EX, except for data flag use eqlaiaed in EX = t 1. , 
above. 

Thermal load (tT-h,). Negative Ex ody. 

Thermal moment (mT*ohz). Negative i;zK d y .  

Fourier component for murface load applied in 
meridional direction (P a/eoho). Read tor negative 
EX or E X  = 4-2. € 

Same as PFE, cir~\oaferentfol direction 

Same as PFE, normal dimetion 



N'trlrc 

El  
--..- 

T 

A1.F 

DN X 

Tenrporaturc differential (0 rcferencct tcrnpctrature). 
EX neg. tbr t l .  

Coefficient of thermal expansion (a)* 
t 1. 

EX negative o r  

Distance from neutral axis. 
for inner surface. ) EX negative or t 1.  

(Value will be negative 

Tlicee data cards (with a t'-l' in  column 1 of the last one) will be 
zuzct*edcd by the following: 

\\'hen EX is 
-1. 
-t 1. 
+2. 

0. 

Next region's GDA, geometry data 
mi8 rsgioa's DLD, pressure loads data' 
This mgiCm'8 DAL, Section properties data 
This region's DLD, then DAL data 

The DLE2 daw is zeroed each time before the above statement 
is exec- Irlrir- a t  all DLD data must be repeated for multiple 
region QT G@m flfldl. 

DECRD 
fndex 

1 

2 

3 

Description and Comments 

TIBT 

TXTP 

-81- leab indicator for PFETB, PTNTB, PNTB 
= I. con8fmts 
= a. F&e-t components giver. 
= 3. Fotsrier 8gmmfq, symmetrical 

Twmpmm cH.trtbrrHoa indicator for inner surface 
f%@lbOT) dS1IJne M -La 



5 

205 

40 S 

00 3 

$0 5 

1005 

l U 3 Q  

1026 

PFETU 

PTHTB 

PNTB 

TBQT 

T T k  

PslO 

PD 

EMD 

I)cuc:ription and Comments 

Ntutrber of f i n k  awns taken to ev8lwtc Fourier 
inversion integral for pressure or temperature 
coefficients. For mo8t ~ 8 8 6 8 ,  best re8ufts obtained 
by setting equal to maximom value of 91. 

Table for PFE load. The array is dimensioned as 
200 and it8 forma is dependant on PILI), as explained 
~~~ow-TCLB S&UP, &dim 3.4.7.1 

Table for PTH load, Like PFETB 

Table for P N  load. Like PFETB 

Table for tempcratftres 011 the inner surfhce. 
Dimension is ZOO; format determi-d hy TmT 

Table for outer surface temper.at\rre. DirnenCion is 
2aO; format determind by TITP 

Angle at which line loul ir applied at a junction point 
(see Figure 1-10) 

Ma@tde of line load. applied at a junction point. 
Conrecutive locrtioru are used for succeeding Fourier 
cbmponents, 11 maximum 

tinit moment applied at a junction (1 1 Fourier 
components possible) 

Don't forga tb ''-'' in column one of the last card. 

3.4.7. 1 Tab &up 

A11 load@ tabf.s-FFETB, PTHTB, PNTB, TBOT, and TTOP-are 
dimensioned 200. Where Fourier rumming irr desired, the value# 8m read 
for all  Fourier ccmponsnts (ENF's) at &,e same time. The format of the 
tiLles for PFE, PTH, .nd PN wil l  depend on tba value assigned to PILD, 
*.'. hilc- that of TBOT and TTOP are determined by TIBT and TITP, 
respectively. 



TAB(1t3) 
TAB(I+ 4) 
TAB(I+ 5 )  
TAB(It6) 

Number of ENF% 
1st ENF value 
hlttp~br of meridional stations where loads are 
eatered 
station W. = 1 ** must be 1. 
Loadrt station 1 *. ,e 
Second station, e.g. 10. 
Load at station 10.. 
etc., with station numbers a d values interlaced. 

P 
& 

I 

r v  

. 
TAB@* TAB@t2)+4) will  be 1€ke TAB(1t I ) ,  i. e. , the 
secoad ENF value. Repsat the pattern. 

Indic.tor = 3 
xAB(g 

TAB(I+l) 
TAlb@+Z) 

Number of theta rays (circumferential stations) 
iac€ded in the hble 
Firat theta value (degrees) ** must be 0. 
Number of sM4.:eqs tc describe the first theta ray 
** Must inclwae ail stations listed for all theta 
rays (20 marcmum) 

TARBt3)F Stations and values interlaced in same manner am 
for Indicator = 2. hie6 regarding firrt and last 
stations apply to all theta ray. 

s 

0 

TAB(2+ TAB(I+Z)t4)F wil l  k lib TAB(It1) for the secolllid theta 
and the paasra repeat8 from there. ++It ir not 
~mCe88azy to & l a  all ratioma from that. m y  one 
ha theta ray twa 8sd tha 8trccrt+diag ray8 but 
e t a t b m  1 md EN mtmt b among them chosen. 
+*"be last theta -1- must be lS0.. 

- 91 - 



1.lAlI'l'S OF 'i'A1)LE EXCEEDED BY ARGUMENT - *. x x x x E b x  
fs. ~\sxsE:fxs VALUE USED FROM TABLE 

r l r i H ,  of coiirsc, wastes time and will not occur if  stations along each theta 
r.\y r;t.irt with 1. and end with EN. 
first t l w t a  ray is not 0,O degrees and the last 180.0 degrees. 
prirrt\but will rcad: 

A more serious e r r o r  is made when the ' 
The resulting 

\ 

.ARGUMENT EXCEEDS EXTENT OF TABLE IN DINTRP 
ARGUMENT = 4 x . x x x x E h  (6 pe r line) TABLE VALUES X , X X X X E ~  - - - - - 

2nd the job is terminated. 

When EX is Next data will be 

0.  This region's DAL, rsction propertier data 
- 1. 

-1. or 2, 
Next region's DGA, geometry data 
(Should sot have had any DLD data. ) 

3.4.  &si Call DECRD (DAL) 

The DAL data array is zeroed each time before the above statement is 
This means that all  DAL data must be repeatad for multiple executed. 

region or multiple case runs. 

DECRD 
Index Name 

ELAY 

STRIX 

EIFH 

Description and Comments 

Number of layers (6 maximum) 

Layer number for second rtrsrr print 

Thickner r indicator 
= tl. conrtantr all rtationr in a layer 
= -1. dircrete volwr  given at THSTA rtatione 

% 



Station numbers at which. thickneeeofd are divun. 
T h e w  are tho same foi- all layers. 
First  una = 1, , last one = EN, 

(20 rnaxitnurn) 

DECRD 
Index Name 

Thicknesses at statinns, layers 

Dercription and Comments 

:--"The TH array is dimensioned (20 x 6). When EIFH - t 1. The 
crrtrstant for citch layer may be enterod in consecutive locations, i. e. , the 
thiL*.kness for layer one a t  DECRD index, 25, thickness for layer two at 26, 
etc. 

145 

146 

152 

When thickness varies along a layer (EIFH = -1) and values are entered 
at th ickness  stations (THSTA), they must be entered according to  FORTRAN 
douirly subscripted arrays. Station 1 on the second layer wil l  have a DECRD 
indes 20 locations away from station 1 on layer one (the inner layer). 
any given station ead layer, the DECRD index = 24 t 20s (layer no. -1) t sta. 
no. (See also the example for entering gradients. ) 

For 

E€UMAT N\rrrJber of materials considered in problem 
(3 mMimuT.., 

Werial indicator/layer (1, 2, or  3) 

Poi8 @on* s ratio / la ye r 

EMAT 

p"$aes 

D E C m  
Index 

158 

A 59 

Name Dercription and Comments 

Nucaber of Youaq'r moduli for the firrrt material 
(10 maximum) 

Tomp.raturer at which Youag'r moduli are given, 
€irr;t material (ENEI of thorn) 
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DECRD 
Index 

169 

179 

180 

190 

200 

20 1 

21 1 

Name 
~ 

YM1 

ENE2 

TMPE2 

YM2 

ENE3 

TMPE3 

YM3 

Deacription and Cornmento 

Yotur(l9a mOddU8 for first material 

Same a* ENEl, a e c d  material 

Same as TWE1, a e c d  m8teri.1 

Same a8 YMl, recond material 

Same ar ENE1, third material 

Same PI TMPEl, third material 

Same ?I YM1, third material 

**When there are no temperature foadu, the Young1# modulua is 
considered constant and should be entered at DECRD indicae 169, 190, and 
211 for materials 1, 2, and 3, rerpectively. 

DECRD 
Index 

221 

222 

232 

242 

243 

253 

263 

264 

274 

Name 

ENAi  

l M P A 1  

A L F l  

ENAZ 

TMPAlt 

ALFZ 

ENA3 

TAQPA3 

ALF3 

Description and Commsatr 
-~ __ 

Number of thermal sxpanrion coefficicrat for f i ra t  
material, 10 maximum 

Temperatures at which thermal e%p8rUion cocffichd.8 
are given. Firrt material, ENAl of them 

Thermal expanmion coefficient. for firat material 

A8 m A 1 ,  rcrcond material 

A i  TMPA1, recond material 

A r  ALFi, aecond material 

Aa ENAl , third material 

A8 TMPA1, third matsrfrl 

Am ALF1, third rnrteri.1 



*..*.I * ~rlklPEI,  TMPEL, TMPEJ, TMPAI, TMPAZ, amd TMPAO are uucd 
by t h c  curve-fitting routine COUIMA, and a 0  the :srnperattrnsrer rhauid be 
lietcrl i n  algebraic awccnding order and should bound expected temperatures 
for , i l l  rt*gionv. 

EM@R 

GsTA 

GR 

Description and Cornmade 

Kutn te r  of gradient rtationc (10 maximum) 

Stationa at which t e m p  rature gradient u a xe gitrsa 
Same for each interface. First one = 1. .Last one 
= EN 

Gradients at  GSTA station8 and t'intsraalt' interfacar, 
counting from the firrt interface (next to the inner 
aurfhcc) up to and includitig the last interface (kiw 
the outer surface of the ahell), Valuers are given a8 
ratio of the total differential between top and bottom 
a urfac e tempo rat ure I. 

**When the gradiantr are corn- along an interface, ENOGR is 
entered o s  1, raid the gradbat valuer are e*ered in the GR array in con- 
Gecutiw ~ocrtions, each r e p m ~ a n t w  the value to be ured for one interface. 
It is not nacearory to eater GSTA vakia~. 

When t&e grutt+mrtr; vary .long an interface, and-gradient utatione 
(GSTA) are givw* $lm Qradienta tbernmher muot be entered according to 
the way F O R T W  +aor+rr doubly aubrcripted arrayr. GR {stations, gradient 
interfacer) = 08 (It?, 3). 

For exampie, EMOGR = 4, ELAY ry 3. then the DECRD indices for 
the GR army would be 
* 

GSTA 
Layer . 

1, 

. - .  

295 

303 

3 15 

2 5. 

(297) 1 (296) oatezed on m e  card 

(307) (308) entered on next card 

(3171 (388; c,ntsrr?d aathird card 

. . .. 



The last ? > A t  data card m h o d e !  b v c  a min- (-) in column 1. l'hc 
gwttretry data, GDR, for the next region will normally follow except for 
twbac-quent caws  where PTHI may a* ha sera. 

When PTfll is ncgirtive, the geometry data remain. the same and the 
wst cardr w i l l  be SDA type. If 'me derirer to entct volua. in the EMSX o r  
EbtNS boundary matrices withorn snhriag the GEOM subrot&ine, he may use 
SDA (2.158) ami SDA (2494), rerpecttve~y, when S t M  ='OD ; or, when summing 
is dttrircd, tlw value. for the firat Ftmrier component will be entered in 
SIN (G458) and SDA (2494) b d  mutceedia3 Fourier components for the  upper 
twuidaty in SDA (780) a d  lower m r y  in S M  (930). 

When PTHI i r  po~itive the IML dah wil l  be followed by DLD, loads 
&ita for the next region. A positive PTHI doe0 not permit a change in the 
EhlSX and EMNS boundary matrice.. 

3.5 OUTPUT FORMAT 

Following are rample pger  and 8 de6cription of the output of the 
progran.. 
;he sample problem dircumsed ia Section 3.6. Due to amount of output 
informatiow oaly a portion of the mrPktr will  be rutd to illustrate the output 
format. Addltioaal r e a d t r  are reported in Section 3.6. The page numbers 
indicate the start of new pages of tbe coanpdet output (i. e. the first print 
wheel has the carriage control charrcter 1) and do not necessarily corre- 
spond to tbs actual page numbers of the c o m m r  output. The latter is a 
function of the PpIPbcr of meridional .tations, tho number of regions into 
which the rhall ha6 been divided and the valw assigned to the print indicator, 
PFL-AG, entered.witb the geometry data, GDA. These page numbers and 
the circled letters that correspond to remarks in the description - re not 
printed by tpI. cempater. The link where the printing occurs and the EFN 
(external folnuh number) of the FORMAT statements are given for cross- 
reference with the p q r a m  listings (Section 3.9). 

The sample output repremgt. mxne of the result. obtained from 

output p.ge 1 Always printed EXEC 

.4 Three title cards, l i e s e  cards are printed exactly 
as embred on the data sheets. 

B This epace is available for otbr  pertinent comments (21) 
that wculci not fit the three title cards but that will be useful 
from a documentation point of view. It is a convenient 
place to include a #ketch of the model arsumcd in ectting 
up the problem, such a. identifying the ends and jtwctians 
of vartour region8 and slzawia(c the load8 and reactions 
together with their rerpcctive point6 of application. 
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Always printcirl KX k X  

Output page 3 

x 

B 

C 

D 

E 

'l'twrt* arc*  12 v;rlucv printed for Fouricr components, but as 
statcxi in thc. input format, only IO values i n  additiora t r r  t h c  
ENFO ibFt* ptovidcd for. The last o m  is  used as a progrnrri 
indicator and in  fact will  be @'wiped out'' by the program, i f  
cnte red. 

Spacc is provided for 10 thetas. 
used as an indicator. 

( 3 2 )  
The eleventh one i s  

See B. 

When SUM = O., it is not necessary to enter any ENFOR 
data. 

When SUM = 0. only three or fewer ENFOR's should be 
chosen. 
-1. OOOOE 10 and will be set to this number by the machine. 

This location like B and C should always be 

Always printed GEOM 

Region num'ber will depend on how the data cards were 
stacked, i. e., the first set of data entered is called "l", 
the second set "2", etc. 

The type of shell is indicated, depending on the (32, 49 or 
90) value read in for the geometry indicator, GMI. 

The value 1. OOOOE 10 indicates a discontinuity 
boundary. Any other values were enteked as data. 
See inpwt format for GDA (page ) 

Thir data will vary with the GMI indicator. 

Theme parameters, together with the finite 
difference increment, DEL, are computed by the 
GEOM rrrbtoutine. 
the N meridional rtations. 

They are printed at each of 

R Figure 1.1 Section 1.3 
X Figure 1.1 Section 1.3 
W FE Equation 4 Section 1.3 
WTH Equation 3 Section 1.3 
GAMA Equation 5 Section 1.3 
RHO Section 1. 3 
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Printccl on negative PE'I.AG 
in IM'I'1, lS (451) 

'I'k:-rc is no saitrplc output page for this, since it would b c :  uscrl w r y  
inlr~yur8tttly for diitgncwtic purposes to check the "ournming matrix'' that 
r:-.awltr frotn linear daubla interpolation of the load rliatribution on the  shcll. 

'I'hc nratrix i o  diiiwnsimcd NFE by NTH, wherc NFE i s  the number C J f  

bt.ititms mtcred  in the table along the first theta ray (TAB (Ii2)) when the 
in:iic.\tor i s  stst at  option 3 (20 maximum): n d N T H  is the fixed point form rd 
111 I>(-i). ENTH (set8 Section 3 - 4 7 ) ,  the numberof theta increments to sum. 

I'his strintning area,  called TEMP, is printed station-wise (column- 
wise], c'iglit per  line. 

PFLAC # O., DATLDS 
( 9 7 )  

The output sample for this page represents results printed out for the 
ta'u1c.s. It would be used strictly ar a cbeck of the data inputted in PFETB, 
PTH TB, PMTB, TBOT and TTOP. (See Section 3.4.7. ) The format would 
appear as follows: 

LOADS TABLES FOR REGION 1 

I PFE PTH PN TBOT 

1 
2 

. . . 
200 

Output page 6 

A 

B 

TTOP 

PFLAG # O., DATLDS (851) 

MeridiCm8l stationr, 19 or 20 of them, chosen 
equally rpaced between 1 and EN 

TBOT, temperature on the bottom or inner surface 
TTOP, temperature on the top or outer surface. 
In the example rhown the bottom surface temperature 
data wao conEZnt, and outer surface varied linearly 
along the meridian, i. e. , TIBT = 1, TITP = 2 
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**Pages 4, 5 and 6, to rafterate, can be printed only !Z the DATLDS 
subroutine has been ectercd. 
case, PTHI will  be greater than cero. ) 

(EX wil l  be 0. or +1. or, for a succeeding 

Output page 7 PFLAG # 0. , DATLYH 

A First, second, and third materiala. Curves a re  
dimensioned for 10 possible values. 
locationa where no entriem have been made, 

Zeroes f i l l  the 

B The meridional rtation. number8 given here are a 
combination of those set up in DATLDS for the 
temperature loads (see output page 6) and the thick- 
ness stations, THSTA, read a s  data o r  set to 1. and 
EN when the thickness is constant, a s  it was in the 
example. 

C 

D 

E 

F 

G 

H 

The temperatures indicate a value a t  the inner face 
of the layer 

(440) 

Printed for all values of PFLAG from here to 
''Output page 8. 

One value of Poirson's ratio per layer, read 
1st layer 2nd 3rd 

4th 5th 6th 
Material indit &torr have the same format. 

Gradients a r e  entered for interfaces other than the 
inner and outer faces and at stations corn >on to all, 
thus the printout indicates interfaces 

where 1 and7 would indicate the inner and outer 
faces , respectively. 

When the DATLYR rubroutine has not been entered 
because EX = f 1. the Section and Material 
Properties outpd w i l l  consist of j u s t  the printout 
from thi6 point to '*output page 8. 

2 3 4 5 6  

DATLNK (102) 

POI, Poisron'r ratio, inner layer 
POI2, Poiercra'r ?.a0 for recond r tresr  



T 
Equation 26, 
Section 1. 7 

I f i ri i 1 ion 

Mocluluo of chi sticity ( E  1)  
Thermal expansion cocffic: icnt 
Distance from the neutral a x i s  to 

the inner surface 

Temperature differential 

*.-*F,tr aticcceding Fourier components none of the Sectioii and Material 
k'rkywrtiL8s a r e  printed except when P F L A G  # 0. 

Lhqnit paye H Always printed DATLNK (104) 

x ENF, current Fourier component 

B Current Fourier component for a force o r  moment applied 
at  a junction point, EN. 

c Mechanical and thermal loads at  each meridional station 

Print  
Symbol 

P(PEiI) 

P(THETA) 

P(N) 

ENT 

EMT 

Math Symbol 
and Equation 

Equation 25, 
Section 1.7 

Equation 25, 
Section 1.7 

Equation 25, 
h c t i o n  1.7 

Equation 35, 
Section 1.7 

Equation 36, 
Section 1.7 

Definition 

Pressure  in the meridional 

Pressure  in the circumferential 

Normal pressure 

direction 

direction 

Temperature load 

Temperature moment 
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.. I t w n v  i ir . i l  ric.c*n i b i V *  tlw ?L irncl A iriatriccs of Equation 47, 
Set*tioir I .  9. 
iarlic*.;itors c*yu;rI to 1. through 6. ; thus, a set printed with 
tht- Ltst r cg i rm on tho shcl l  would IC! for a b2torn boundary. 
R r.rnc.hcd shells m a w  have scvrral top boundary prints but 
; ~ n y  cloet4 apex regtons (RCITP ;= 9.) wil l  not be printed. 

‘l’hcy a rc  printed for boundary ccrndition 

h P* 
Symbol 

Q(P=) 
Q(THETA) 
N ( P m  

SUMS ( 7 3 3 )  

Math Equation 
and Symbol 

Figure 29, 
Section 1.3.4 

Cur rtmt circumferential angle 

Current Fourier component. 
only o r  represent the Fourier sums to this component, 
depending on whether SUM = 0. or SUM # 0. , respectively. 

Results are for  this component 

Print 
Symbol 

U 
V 

w 

M(PHI) 

M( THETA) 

WPmt 
THETA) 

Output page 10 

Math Symbol 
and Equation 

Equation 21, 

Figure 3at 
Section I. 3.5 

Section 1.3.4 

Equstion 20, 
Section 1.3. 5 
Figure ZC, 
Section 1.3.4 

N( THETA) Equation 19, 
Section i. 3.5 
Figure 2a, 
sl?ct;on 1.3.4 

Definition 

Meridional displacement 
Circumferential displacement 

Normal dispfacement 

Meridional bending moment per 

Circumferential bending moment 
unit length 

per unit length 

Bending moment per unit length, 
shear 

Definition - 
Transverse forces per unit 

Meridional membrane force per  

Circumferential membrane force 

length 

unit length 

per unit length 

Membrane force per unit length, 
shear 
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Output page 11 

A Print 
Symbol 

SIG(PHI) 

SIG( THETA: 

SG(PHI, 

SGZ (P HI) 

SGZ 

SG2(PHI, 

THETA) 

(THETA) 

THETA) 

Math Equation 
or Symbol 

Equation 79, 
Section 1.4 .3  

Definition 

Meridional stress, inner 

Circumferential stress, inner 

Shear stress, inner surface 

surface 

surface 

Meridional st re s s , chosen 

Circumferential stress, chosen 

Shear stress, chosen surface 

8 urface 

surface 

Pages 9, 10, 11 a re  repeated first for other regions and then for other 
thetas. 

3.6 SAMPLE PROBLEM 

To demonstrate the use of the computer program and illustrate the 
format for data input, the sample problem shown in Figure 3.6 hae been 
worked out. 
use of many options in the program. 
load dirtribution, varying temperature loads, branch and eccentric dis- 
continuity junctions, applied boundary forces, di8continu;ti loads, and 
others. 
paragraphs. 

This problem is a hypothetical one, selected to illusrrate the 
The problem features an imcymmetrical 

The details for setting up this problem 2re CLdcribed in the followin? 
Sample date sheets are presented in Section 3.4.9. 

3.6. 1 Problem Set- 

The first step toward setting up this problem is a suitable selection of 
a mathematical model. 
necerrsry to divide the shell into at least four regions for computer solution. 
Using four regions, it will be convenient to draw a line diagram of the 
geometry denoting the extent of each region, the junction, and appropriate 
end conditions. This line diagram is llbown rn Figure 3.7. 
indicate direction of increasing meridional coordinate or station numbers. 
The requonce of input of regional data ir given by the numeral designation 
given the particular regions (i. e., 1-2-3-4). Other sequences for nm'bering 
region8 a re  pscmimsible provided the relection is conrirtent with solutlcn 

For the shell configuration considered, it will be 

.. 
The arrows 
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9 /I 
Figure 3.7 

;-rot'-dnre of the program. 
i?i FiGxre 3.7, the  problem could be coneietently formulated by sequencinq 
t h  rtagional input data (with appropriate end condition, of course) in these 
iolio\\.ing combinations: (2-1 -3-4), (4-3-2 -l) ,  and (4-3-1-2). 
( 1 - 2 4 - 3 )  and (2-4-3-1) fa3r example would not offer consistent formulation 
since a continuous transgreseion to the next regicr. iti not possible with this 
ic1r:nat. Using the example illustrated in Figure 3. 6 let us now proceed to  
the  input of regional data information. 

Referring to the region numbering system shovm 

The sequences 

3. o. 2 Regional Data 

Let ua now conrider the individual shell region? tha t  make up the she l l  
cunii&urrtion (Figure 3.8 a-d). 

Region I Reqion Xi e a rperical shell with an 
opening angle cf 80 degrees. The 
end condition at (i = 1) ir a closed 
apex and ..t.quirer that BCITP be ret  
equal to 9. Since this region joinr to 
two other rhells at i = N, i t a  bottom 
boundary (BCIBM) i o  ret equal to 10. 

The mechanical loading on the 
rhell conrirtr  of an unoymmct ric 
extemal normal p re r ru re  load with 
a dirtribution given in  the form 

I?,- 16.1 ?k t yh6.d 
80 * _I- * - 

i--  1 
Figure 3.88 
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(i, 2, (10 t 3 C O S O )  

Thc forni of this load requires that the $roblcrrt be defitiod by t w o  
F4wrir.r hartironicv (n - 0 ,  1) in order to obtain complete solutions. 
tcnrpemturc applicd to thir region is a constant temperature differential of 
110 deyrc.er (0' roFrencu) applied to the inner surface and linearly varying 
tsiriyerature at the outer eurface Btarting from 0 .  at the apex to 50 degrees 
,\t rtation i N. Thc number of rtations considered in this region is 121. A 
l i t i t s  load of l b .  1 pcoundr per inch is applied a t  the branch junction which 
wquireu vnluee of JI = - 10' and PD = 16.1 i% DLD (1005) a:rd DLD (lOOe), 
retspzctivelj. If doeired this load could be read in with data fc- region 11. 
In this case, ii wouid be ret equal to 115 degrees. 

'I%(; 

QO 
F, Region II is a conical shell in which 

REGION II the cone angle input (ANX) is 1 i 5 
degrees. 
layer section with co-starit tempera- 
ture of 110 degrees a t  outer surface 
and 150 degrees ;* inner surface. 
The middle layer (0. 1-inch thick) is 
conatructod of material 2 and layers 
1 and 1 (0.05-inch thick) a re  01 
material 1. 
interfaces are rhcwn in the accom- 
panying figure and are r d e c t e d  in 
the gradient table rhown on card 143. 
A force -free end condition excepting 

3 2 5  l)AI for an applied asisymmettic rh t a r  
ioad (25 pounds par inch) exists at 
top boundary (rtation I). Thir 
boundary condition requires that 

Figure 3.8b BCXTP be ret  equal to 6, and 
appropriate diagonul boundary arrays a re  read in EMlX, EMS, SMSX 
array in GDA locrtionr 62)-632. 
junction and BCIBM ir je t  equal to 10. 

This r .  if JD is a ihree- 

The temperatures .at the 

The other endpoint correrpondr to a branch 
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Figure 3.8 c 

Material 1 is used and the number of statioms have been &omem at 141. 

Since an eccentricity in reference surface occurs betweam Ragions m 
and IV, the dccslarlcity distaact 
angle - = 10 &greea. 

is uet equal to 0.031 and di8ce~tindty 

Region IV The krt region ie  I two-layer 
cylindrical m b t L  The botmdary 

1 

-1 
b b & 8 1  a condition at the h u t  station €8 

1 1 aS8-d to be Chmptd, tbGn 
BCIBM = 3.0. 
presrure of LO psi act6 011 the section 
and temperaharemof oaer and inner 
marfacer and 120 degrees and 150 
degrees, respectively. The outer 
layer ia conmtructed of ma' rial 2 
and the inner layer of material 1, 

ad 
* - - -  m 

t 7  A uniform internal 

1ep.r rSallLk 
l#fr 

93" 

The temperature gradient across the I- - shell thSckne8s is asuumed to vary 

Figure 3.8 d 

3.6. 3 Data Sheet8 a d  Rerult8 

along the meridian of the shell. 
The value8 are shown on data sheete. 

The regional data €or each region art written on standard IBM data 
sheets. 
folhwing IBM data form 8heeta. 

The complete data for the eample problem are shown in  the 
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The machine printout f n v  reg im I11 immediately follow8 the data 
sheets. 
0 = 0 and 90 degrees, 
quantities of regions I1 and IV  a r e  shown following printoui. 
f a r  Legions I, I1 ware discussed in Section 3.4.5 on output form. 

The complete solution (i. e . ,  nf = 0 and 1 combined) 13 shown for 
To illustrate the graphical plots, results of particular 

Some results 

3.7 UTILdTY SUBROUTINEA 

3.7. t MAD, MSU, MMY, INV 

These four subroutinas perform matrix addition, subtraction, multi- 
plication, and inversion, respectively. They a re  extremely simple in their 
approach and must be recompiled to change dimensions for use in other 
decks. There a r e  no e r r o r  indications given other thap the usual NAASYS 
trapping information for underflows, overflows, and divide checks. When 
data have been entered correctly, these subroutines wil l  present no problems. 

3.7.2 DINTRP, E N T E R P  
-I - 

Thecle subroutines perform linear double and single interpolation. 
DINTRP makes use of E N T E R P  in interpolation for valueq along a particular 
curve. 

In DINTRP, when the f i r c z t  argument is not' bounded ty the given table 
(curves), the statement 

is printed, followed by 
"ARGUMENT EXCEEDS E X T E N T  OF T A B L E  IN DINTRP. I '  

ARGUMENT = (1 PE 12.4) 
T A B L E  VALUES (printed 6/line) 

and the job is terminated. 

When the argument in the single interpolation subroutine, E N T E R P ,  
exceeds the limits of the table, the ro:itine selects the value at either eiid of 
the table and zoneinues after printing 

"LIMITS OF T A B L E  EXCEEDED BY ARG'JMENT = (1 PE 12,4) 
(1 PE 12.4) = VALUE USED FNOM TABLE" 

Values entered in the tables should always be given in increasing 
algebraic order, both in t e rms  of the numbers used to designate each curve 
of the family, and thevalues assigned to the points alotig the curve.. 

- 177 - 



3 . 7 . 3  CODIMA 

CODIMA is a curve -fitting subroutine has the following properties: 

1. he straight portions of any curve defined by three points on a 
Pt--nrght line, a strp ht line wil l  be fitted. 

2. To the smooch portion of any curve, a smooth curve will  be fitted. 

3. The method maintains contiriuous first derivative except at the 
ends of a straight segment. 

. .  4. The method wil l  f i t  curves with 'Fcornerso' o r  "sharp turns" without 
the large deviation usually found in other methods. 

\ 

considerations taken when an engineer fits a curve with a €rench curve are 
formulated. This is the CODIM (controlled deviation interpolation method) 
concept. 

An interpolatior method is developed in such a way that some of the 

The method wil l  interpolate in a more engineering manner in the 
following respects : 

1. The first Gvrivative is continuous except a t  the ends of straight 
segrnep+- defked by three points on a straight line. 

2. No large deviatiqn will be found when slope changes are large. 

3, Ability -to cha:-,g;e va??2e znd slope rapidly. 

4. Ability to fit straight lines on straight line port: IS of the curve 
and f i t  smooth arcs  through the smooth portions of the curve. 

The method fits a polynomial through an interval with information 
given by "previous poilitst' (points to the left) and another polynomial through 
the interval with information given by "subsequent pointst* (points to  the 
right). These two polynomials ape then compared for compatibility. If they 
differ, a weighted average of the polynomials is taken in such a way that the 
polynomial that deviates less from the straight line connecting the points 
defining the interval is given more weight. 
used over higher-degree polynomials in the CODIMA version. 

For  simplicity, parabolas are 

3.7. .. STCOMb 

STCOMF is used to cornbice the station numbers at which the thick- 
nesses are entezed in  the DAL data region with the station numbers for the 
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inner and outer layer temperatures (set up in DATLDS) to form a common 
set of stations to be used in the computations for DNAX, D, EK, ENIS, and 
EMT. 

3.7.5 CRTG 

CRTG is a system of subprograms (some MAP compiled) designed to 
enable a FORTRAN programmer to use the S-C 4020 CRT plotter for graphing 
the t-ypes most frequently required in engineering and scientific applications. 

The o u t p t  is intended to be imitative of the results obtainable by hand 
plotting on standard graph paper. 
intermixed in any amount. 

Printed and graphical output may be 

The System establishes a fairly natural correspondence between the 
A programmer's representation of data and its appearance on the graph. 

simple curve may be produced with one CALL statement. 
graphs, the f u l l  power of FORTRAN may be used to describe the data. 
Scaling is automatic and includes all  curves on a graph. 

F o r  complicated 

The drawing of grids and placement of output on the frame a r e  
automatic. 

Some restrictions of CRTG are a s  follows: 

3.  Requires an S-C 4020 to process the output 

2. Requires NAASYE and the NAASYS library routines for the 
s-c, 4929 

3. Uses the system CRT file, 'UNIT16' 

4. Requires the use of nonstandard RETURN statements, a language 
feature introducec? with 7090/7094 FORTRAN IV, Version 13 

CRTG will fail to express applications that require unusual grids. 5. 

6 .  A special version of NAASYS library routine DXDYV is required. 
This is included in the deck, 

3.8 ERROR INDICATIONS, PITFALLS, RECOMMENDATIONS 

Several of the e r ro r  indications resulting from improper data input 
have already beall discussed, To reiterate, they were as €allows: 

1. A bad index on a DECRD card (Section 3.4.2) 
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2. Omission of the negative sign on the last card of a data array 
(Section 3.4.2). 

3. Omission of some o r  a l l  of the title cards (Section 3.4.4) 

4. Limits of pressure . r temperature tables exceeded by arguments 
wher, using the indicator = 3 option (Section 3.4.7. 1). 

One should be very careful to check the ou+:ut from the program to 
see that it corresponds to the input that he entered. 
ent check of input data may prevent a wasted run on the machine. In 
nddition to the four e r r o r s  indicated above, such things a s  sign conventiorr, 
angle measurements, and compatibility of units a r e  common pitfalls. 

Better yet, an independ- 
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APPENDIX IIIB 

PROGRAM NOMENCLATURE 

In this section are listed all variables that are used in the FORTRAN Iv 
program and their related definitions. The appropriate mathematical 
equivalents from Section 1.0. are  included where applicable. 

A 

A 

- 

A 0  

A2 

AZCtbs 

A2SIN 

AA2 

ACoas  

A* 

AI 

A JI. 

4K 

49x04 matrix, defined in Equation 66, Section 1. 12; constant 
in conics computation 

a Reference length (L) 

4-x-4 matrix, used to preserve A matrix fcsr meridional 
station 2 

2 Cos 81, variable in conics computations 

tations Sin 2 el, variable in conics compu, 

Constant in conics computation 

Variable in parabola computation 

COS(APHI), see APHI 

4-x-4 matrix, used to preserve A matrix for bottom 
GGcontinuity point 

ALF cy 

ALFl 

Used in computing X distance for general discrete points, 
CEOM 

Used in computing X distance for general discrete points, 
GEOM 

Thermal expansion coefficient for N summations 

Thermal expansion coefficient data far material 1 
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ALF2 

ALF3 

ALFA 

ALFA2 

ALFJ 

ALF+ 

AM. 

AMB2 

AMU 

ANGSP 

ANX 

APB2 

APHI 

AS1 

ASINP 

ASN 

Thermal expansion coefficient data for material 2 

Thermal expansion coefficient data for material 3 

DELIDPREV 

ALFA **2 

Inner coefficient of thermal expansion/ layer 

Outer coefficient of thermal expansion/ layer 

Value of signed variable 

A2 - B 2 constant in hyperbola co- iutation 

Sign control variable in conics 

Angle span for sphere-toroid, GEOM 

Axigle between the generator and axis of revolution, 
cone -cylinde r, GEOM 

A 2 2  t B constant in ellipse computation 

GEOM parameter for computing X distance in sphere- 
toroid shape 

4-x-4 matrix, used to preserve A matrix at  top, for open 
shell or discontinuity 

SINCAPHI) see APHI 

4-X-4 matrix, used to preserve A matrix at  bottom,. for 
open shell or discontinuity 

Sin2i, 1, variable in parabola computatim 

Axial surface length 

ASSIN 

AXL 

B 

B 

rLI 

b 4 0 x 4  matrix, defined in Equation 66, Section 1. 12; constant 
in conics 
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B2 

B2MSMS 

BB2 

BCD 

BCIB 

BCIBM 

B CIT 

BCITP 

B+P 

BETA 

BETADP 

BETAP 

BI 

BJR 

BM 

BMU 

+4 

BP b1 

BPHI 

4 ~ x 4  matrix, usad to preserve A matrix for station 2; also 
used in s t resses  

Variable in hyperbola computation 

B2 

Three title cards read in executive program 

Boundary condition indicator, bottom, ti = N) SDA data 

Boundary condition indicator, bottom, (i = N) GDA data 

Boundary condition indicator, top (i = 1) SDA 

Boundary condition indicator, top (i = 1) GDA 

COS(PHIO), sphere-toroid, GEOM, see PHI0 

Cylindrical coordinate variable describing conics 

Second derivative of BETA 

Derivative of BETA with respect to angular variable of 
BETA description 

4-x-4 matrix, used to preserve B matrix for bottom 
di s continuity 

Index in conics when subdividing cylindrical coordinate 
range 

Value of signed variable 

Sign control variable in conics 

4-x-1 matrix, used to preserve solutiors for bottom 
discontinuity point 

0 

First derivative of the membrane stiffnsas 

GEOM parameter used in computing X distances for 
s phe re -toroid 

BQ Same as B2, see COMMON region, INTLD 
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BS1 

BSINP 

BSN 

BTA2 

BTAP2 

C 

C 

C2 

CHI 

CHI1 

CHI2 

CI 

* 

c 

C+DIMA 

C ~ N T  

cs1 

GSN 

D 

D 

c. 

DA 

4-x-4 matrix, used to preserve B'inatrix at top, for open 
#hell or discontinuity 

SIN(PHIO), we PHI0 

4-x-4 matrix, used to preserve B matrix at bottom, open 
rhsll or di8continuit.y 

Variable in the conics option 

Variable in the conics option 

4-x-4 matr%x, defined in Equation 66, Section 1. 12 

40x04 matrix, used to preeerve C matrix for station 2 

40x04 discontinuity matrix, Equation 57 

4-x-4 discontinuity matrix, Equation 58 

4-x-4 discontinuity matrix, Equation 59  

4-x-4 matrix, used to preserve C matrix for bottom 
discontinuity 

Parabolic curve fitting subroutine (see page 178, Section 37.3) 

COS(ANX) used to compute WTH for cone-cylinder, GEOM 

COS(qe) used in Fourier summing 

49x04 matrix, uoed to preserve C matrix at top, for open 
shell or discontinuity 

4-x-4 matrix, used to preserve C matrix at bottom, for 
open shell o r  discontinuity 

d Membrarre stiffness (dimensionless in program), 
Equation 33 

General data area, read in executive program 
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DAL 

DATLDS 

DATLNK 

DATLYR 

DDL 

DECRD 

DEL A 

DEL2X 

DELSQ 

DELTH 

D E W  

DENMP 

DEN+M 

DENbMP 

DOiNTRP 

DIs1, 2, 3, 4 

DLD 

DLR 

DLS 

Section properties data/ region, read in DATLY R subroutine 

Data loads Subroutine sets PN, PFE, PTH, TBT, TTP 
(prsssure and temperatwe loads) 

Regional data read idrout ine ,  sub-executive program for 
GEOM, DATlrDS, DATLY R 

Section properties subroutine 

Used in GEOM (2040) 

Data read subroutine (see explanation page 79)  

Interval size between meridional stations 

2. *DEL 

DEL ** 2 

Circumferential increment for Fourier summing for loads 

Denominator for computing GAMA in GEOM subroutine 

Denominator quantity for finite difference first derivatives 
in discrete points option 

Denominator for computing W FE in GEOM subroutine 

Denominator for fh i t e  difference and derivatives in the 
discrete points option 

Linear double interpolation subroutine 

Discantinuity matrices formed a t  top discontinuity point in 
PANDX 

Data area in DATLDS subroutine/region 

Used in GEOM (2060); intermediate radial increment in 
d* ecrete point option 

Used in GEOM (2062); intermediate arc length increment in 
discrete point option 

, 
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DLT 

DNA 

DNA2 

ONAX 

DP d l  

DPREV 

E 

E 

EO 

E l  

E2 

EC 

ECX 

.1L 

E1 

EIFH 

E JI 

E K  

EKK 

EKTN 

Used in GEOM (2034); axial increment of input in discrete 
point option 

Distance from neutral axis 

DNA far second surface where s t resses  a r e  computed 

DNA a t  combined thickness and temperature stations 

Derivative of the bending stiffness 

DEL for previous region 

40x04 matrix (see Equation 41) 

Reference Young Is modulus (P/ L2) 

Modulus of elasticity for N summations 

EO 

El for second surface where stresses a re  coinputed 

4-x-1 auxiliary storage matrix 

Ecc Eccentricity of reference surface at discontinuity junction 

Inner modulus of e la s ticity / stat ion/ la ye r 

Thickness indicator t 1 = constant all stations in a layer, - 1 = discrete values given at THSTA 

4-x-4 matrix, used to  preserve J matrix for bottom 
discontinuity (Equation 51) B 8z R 

d Bending stiffness (dimensionless in program), Equation 34 

Number of regions 

Fourier coefficient for bending distortion (Equation 24) B & R 

ELAM2 kz (HO/AO) ** 2 

EEAY Number of layers (six maximum) 
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ELD 4-x-1 matrix used at top discontinuity point 

EM 

EM1 $a 4-x-4 diagonal boundary force matrix (i = 1) (Equation 47) 

Number of radii entered €or discrete point geometry case 

EM1N Cl 40x14 diagonal boundary force matrix (i = N) (Equation 47) 

EMlX $2 EM1 when read a s  data in GDA area 

EM2 H 4-x-4 matrix (Equation 50) 

EM3 A 4-x-4 diagonal boundary displacement matrix (i = 1) 
(Equation 47) 

EM3N A 

EM3X 

EM4 J 

EM5 4 

EMSN 1. 

EM5X 

EM6 f 

EMAT 

EMD MD 

EMFE m .  

EMFEP 
6 

EMFT mke 

EMFTP 

EMK 

EMNl 

4-x-4 diagonal boundary displacement matrix (i = N) 
(Equatinn 47) 

EM3 in GDA data area 

40x04 boundary matrix (Equation 51) 

4-x-1 boundary matrix (i = 1) (Equation 47) 

4-x-l boundary matrix (i z= N) (Equation 47) 

EM5 in GDA data area 

4-xwl boundary matrix (Equation 51) 

Material indicatorflayer (1, 2, or 3) 

Moment a t  bottom discontinuity point 

Bending moment per unit length, meridional direction 

First derivative of EMFE 

Bending moment, shear 

Fir#% derivative of EMFT 

Spring value-moment at location SPRL 

EMfN, when read as data in GDA area 



EMN3 

EMN5 

EMT mT 

EMTH me 

EMTHP 

EMTP 

E N  

ENA 1 

ENA2 

ENA3 

ENEl 

ENE2 

ENE3 
L 

ENF 

ENFO 

ENFE 

S N F I  

N 

n 

tt 

ENF+R 

ENFT tee 

EM3N, when read a61 data in GDA area 

Eh%LSN, when read tu data in GDA area 

Temperature moment, Equation 36, Section 1.7 

Bending moment per unit length, circumferential. direction 

First derivative of EMTH 

First derivative of EMT , 

Number of meridional points/ region (159 maximum) 

Number of thermal expansion coefficidhts given for firot 
material (1s maximum) 

Number of thermal expansion coefficients given for second 
material (10 maximum) 

+ 

c 

Number of thermal expansion coefficients given for third 
material (10 maximum) 

Number of Young's moduli given for first material 
(10 maximum) 

Number of Young's moduli given for seccnd material 
(10 maximum) 

Number of Youn,gls moduli given for tliird material 
(10 maximum) 

Current Fourier ccmponent 

Initial Fourier component 

Fourier component for membrane force, meridional 
di r ection 

Subsequent Fourier components (10 maximum) 

Fourier component p,rint values (3 possible) 

Fowrier coefficient for membrane shear force 
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ENMAT 

E N ~ G R  

EN+T 

EN+TH 

Number of materials (3 maximum) 

Number of gradient stations { 10 maximum) 

Number of eb'ions for temperatures given in TBOT and 
TTOP 

Number of stations for thicknesses given in TH 
(20 maximum) 

ENT tT Temperature load (nondimensional) Equation 35, Section 1.7 

ENTERP Single, linea r interpolation subroutine 

ENTH 

4 
Ex 

F 

F 

FEFE . 

FETH 

FETHP 

FI 

-.- 

G 

G 

e2 

- 

M k b e r  of theta values to use in Fourier summing for loads, 
also Fourier coefficient for membrane force, circumferential 
direction 

Outer moddus of elasticity/ stationjlayer 

G~nstane data jadicator. Use  only when SUM = 0. 
0. = no constants, - = all constants, t 1 = section properties 
and temperature loads constant, + 2 = symmetrical pressure 
loads, no temperature loads. SDA(1) 

49x04 matrix, see (Equation 41) B & R 

bg Fourier coefficient for rotation, meridional 

Fourier coefficient for rotation, circumferential 

First derivative of FETH 

48 

40x01 matpix, used to preserve f matrix (Eqyation 5Z, 
Section 1.12) for bottom discontinuity point 

40x01 matrix g in Equation 66, Section 1. 12 

40x01 matrix, used to preserve g matrix for station 2, also 
used in stresses 



GA 

GAM 

GAM2 

GAMA Y 

GAMRX 

GDA 

GECX 

GEMK 

GE(#M .. 
GE+MI 

GI 

GMI 

GPSI 9 

GQ 

GR 

GS 1 

GSN 

GSPRL 

GSTA 

4-x-4 matrix, G in Equation 41, Section 1.8 

Current GAMA value 

GAM ** 2 

Geometry parameter at stations 

Intermediate variable for sign check 

Data area in GEOM subroutine/region 

Eccentricity of reference surface at bottom discontinuity 
point 

Spring value - moment 

Geometry subroutine 

GMI in SDA region 

4-x-1 matrix, used to preserve g matrix (Equation 46, 
Section 1. 12 for bottom discontinuity point 

Geometry indicator. 1. = cone-cylinder, 2. = sphere- 
toroid, 3. = general discrete points 

Angle of inclination at discontinuity (degrees) 

40x01 matrix, used to preserve g matrix for station 2 ,  
see G2 . 

Values of gradients at GSTA stations and internal 
inter faces 

4-x-1 matrix, used to preservc g matrix when I = 1 at open 
boundary or  discontinuity 

40x01 matfix, used to preserve g matrix when I = N at open 
boundary or  discontinuity 

Location of spring (one per region) 

Temperature gradient itations (same for each interface) 
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GUK 

GVK 

GWK 

H 

HO 

HI 

I 

I 

I1 

12 

IBCB 

IBCT 

IBCX 

ZERR 

IFR 

IGM. 

c 

1 4  

u 

IJ D 

IJTB 

Spring value - 5 direction 

Spring value - 8 direction 

Spring value - &direction 1. 
‘ i i  

h0 Reference thicknes s (inches) 

40x04 matrix, used to preserve H matrix (Equation 51, 
Section 1.7) for bottom discontinuity point 

i Index, 

Index 

Index 

meridional stat ion counter 

discrete point option 

Fixed paint value for BCIBM 

Fixed point value for BCITP 

Fixed point value, either IBGB o r  IBCT 

Error  indicator from matrix inversion subroutine 

Counter, ENFUR subscript 

Fixed point value for GMI 

Computed GO TO index in DATLDS, EFN 420. = I, 
pressures, = 2, temperatures 

DATLRS - subscript to send temperature values to  TBT or 
TTP PIX - index and subscript fo%r forming an array of station 
numbers; GEOM - Index, discrete point option 

, 

hdex 

Index 
discrete point option 



IL 

INAl, 2, 3 

INC 

INDC 

INE1, 2, 3 

INTLD 

INV 

IPRS 

XRGN 

ISDA 

ISEC 

ITB 

ITBT 

lTTP 

IX . 

IX L 

IXX 

12 

GEOM - DO indey for EFN 80 
RATLDS - TLOC cubscript to pick up NBSTA for next 
ENF/load increment = 1 

Fixed poiat form of ENA1, 2, 3 

Increment between temperature statibns 

Fixed point form of loadn indicators 

Fixed point form of ENE1, 2, 3 

Su3routine which computes deflections, interna 
stres-es 

idat rix inversion sub routine 

loads anc 

Fixed point form of PILD, the pressure indicator 

Region number in argument list of GEOM subroutine 

SDA location for storing pressures, incremented by PN 
dimension 

Region DO loop index in PANDX subroutine 

\ TAB subscript. for pressure tables, incremented by PNTB 
dimension 

Fixed point form of TIBT, bottom surface temperature 
indicator 

Fixed point form of TITP, top surface temperature 
indicator 

DATLDS - subscript used to store loads in SDA data'area 
PIX - DO loop index for region counter 

Path indicates in INTLD for second interface stress 
calculations 

Fixed point form of material indicator/ layer 

Subscript for Z solution; used to step backwards through a 
region 
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J 
e 

J 

JI 

JKL 

JR 

JTD 

JTDL 

K 

K 

KO 

- 

K1 

K2 

KK 

KKE 

KLM 

KPI 

KS 

KTPW 

Kx 

DO loop index, DATLDS at EFN 440, etc. 

DO loop index, GEOM at EFN 78 

THETA subscript in SUMS subroutine: 

Index discrete point option 

Index 

Index t 
DO loop index, PANDX at EFN 265, etc. 

Subscript for separating stations and vabes in DATLRS 
tables 

Current table location in loads table 

Upper limit of table values for present Fourier component 
of load 

SUMS - DO loop index, region counter; PIX - region 
number read from tape and INTLD - DO loop index, region 
counter; G m  

Fixed point form of EKK, number of regions 

Subscript for setting ENF to  next ENFI value 

DO loop . .  limit in GEOM at EFN 78 

Number of temperature stations set in DATLDS at EFN 312 

Tape number 12 or 13 where SDA data is stored. On 
subsequent passes during Fourier summing the number are  
interchanged 

Subscript of TAB urred to pick up the number of staticma in 
DATLDS 

* 
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L 
c 

L 

LO 

L1 

LL 

LSP 

M 

M 

- 

MAD 

NLN 

MM 

MM2 

MMY 

MSP 

MSU 

MT 

MTH 

N 

N 

DO loop index, PANDX at EFN 265, etc. 

Set at zero to permit zero subscripting of P, X, and Z 
matrices in PANDX and INTLD 

Lower limit in DO loop for computing FETH in INTLD 
subroutine 

DO loop index, SUMS at EFN 520 

Fixed point form of SPRL, spring location 

Fixed point form of EM, number of general discrete points in 
GEOM 

Matrix addition subroutine 

Index; discrete point option 

DO loop upper level for discrete point geometry, GEOM at 
EFN 80 

M-2 

# 

Matrix multiplication subroutine 

Path indicator to skip stiffness calculations when there is 
no change from previous case 

Matrix subtraction sub xoutine 

Fixed point form of the number of temperature stations, 
ENOT 

Fixed point form of the number of thickness stations, 
ENOTH 

Fixed point form of EN, the number of meridional 
stations/ region 
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NFE 

NLAY 

NLAY 1 

NMAT 

NN 

N F R  

N ~ S T A  

NQTP 

NS 

NSM 

NTH 

NTPW 

NX 

+PEXQ 

P 

PO 

PANDX 

Number of meridional stations for Fourier summing of the 
loads 

Fixed point form of ELAY, the number of layers/region 

Number of interfaces, ELAY t 1. 

Fixed point form of ENMAT, the number of materials 

DO loop upper level for RHOX calculation in GEOM 

Fixed point form of ENOGR, number of gradient stations 

Number of stations where loads are  given 

Tape number for Fourier components. 
8 = one ENF value 

3 = several ENF's, 

DO loop index, region number counter, DATLNK at E F N  1 

Index; discrete point option 

Fixed point forms of ENTH, number of thetas to s u m  

Tape number 9 o r  10 used during Fourier summing to 

store sums/ region/theta 

Temporary save location wheE interchanging NTPR and 
NTPW 

Optional e r ro r  exit subroutine. 
the absolute value of a negative argument in GEOM 

Used to take square root of 

Three-dimensional a r ray  (Equations 4, 4, 150) used to store 
the P matrices (Equation 74) at each meridional station/ 
region 

49x04 matrix for P at the (N - i)st station of previous region 

Subroutine for generating the P and X matrices of 
Equation 74 



P D  PD 

PFE P b  

PFETB 

PFEX 

PFLAG 

PHI0 

PHIN 

PI 

PILD 

P I X  

PIX1 

PM 

P N  

PNTB 

PNX 

P+IZ 

P+IS 

POIX 

P R +  

PSI 

PSI0 

P 

Y 

3( 

$0 

Pressure o t  a point of discontinuity 

Fourier component for load in the meridional direction 

Data table of PFE values, DLD data area 

Table location for PFE values for next Fourier component 

Print indicator 

Initial opening angle from vertical axis for sphere or toroid 

Final opening angle from vertical axis for sphere o r  toroid 

Determinant value, in argument list of INV subroutine 

Pressure indicator for type of data in tables, see 
explanation of DLD data 

CRT subroutine 

CRT indicator; plots curves when nonzero 

COMMON location for preserving material properties data 

Fourier component €or load in the normal direction 

Data table of P N  valges, DLD data area 

Table location for P N  values for next Fourier component 

Poisson's ratio for the inner layer 

Poisson's ratio for the second strew layer 

Poisson's ratio/layer in DAL data area 

Temporary storage location for POI in INTLD at E F N  1002 

Intermediate variable for a sign check in GAMA computation 
of discrete point option 

Discontinuity angle at the bottom of a region (degrees) 

Angle at  which load i e  applied at discontinuity point (degrees) 
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PSIM 

F SIP 

PTH Po 

-P THX 

PTHTB 

PTHX 

4 QFE 

QTH €0 

R 

R r 

- 

RA 1 

RC 

RCRV 

RCRZ . 

RCURV 

RCURZ 

R F F  

40x01 matrix, moment at discontinuity point 

4-x-1 matrix, pressures at discontinuity point 

Fourier component for load in the circumferential direction 

Path indicator for multiple case jobs 

Data table of PTH values, DLD data area 

Table location for PTH values for next Fourier component 

Transverse force per unit length in meridional direction 

Transverse force per unit length in circumferential direction 

Normal distance from shell to axis 

Radius of cone o r  cylinder at station 1 

Radius of curvature of sphere or toroid 

Interpolated station values of meridional radius of 
curvature 

Interpolated station values of circumferential radius of 
curvature 

Input values of meridional radius of curvature 

Input values of circumferential radius of curvature 

Standard form coordinate of conics offset from axis of 
revolution 

Current RHOX value set for each station in PANDX 

First derivative of RHO 

RIA0 
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RIPT 

RJ  

R+FF 

RR 

RRJ 

S 

S 

c 

s1 

s 2  

s3 

s 4  

s5 

S6 

s7 

S8 

s9 

s10 

s11 

Discrete  radii fop gene ra l  ehell  shape, GDA data area 

Intermediate radii for better curve fitting of RIPT 

Offset dis tance of center of curvature from axis  of 
revolution for toroids 

Intermediate radius designation at stations for smoothing 
in discrete points 

Intermediate radius designation f o r  smoothing i n  discrete 
points 

Followed by a number indicates a scalar quantity which is 
used in several equations or is more efficiently defined out- 
side a DO loop. The name of the subroutine and nearest 
external formula  number (EFN) is given except for those 
found in COMMON. 

COMMON, 1. -POIDATLDS: 610, 700, 710 

COMMON, 1. t POI DATLDS: 405 

DATLNK: 20, 40, 305 DATLDS: 401 PANDX: 100, 410, 
450, 900 INTLD: 490 

DATLNK: 20, 40 PANDX: 3, 50, 900 INTLD: 490 

DATLNK: 20, 50 DATLDS: 5 ,  622, 625 SUMS: 602 
DATLYR: 335 INTLD: 490, 545 PANDX: 100, 410 

DATLYR: 3 3 5 P A N D R  50 INTLD: 512, 545, 553, 572 

DATLYR: 335 PAMDX: 50 INTLD: 548, 549 

DATLYR: 335 PANDX: 100, 410, 900 IhTLD: 548, 549 

DATLYR: 347 PANDX: 100, 410 INTLD: 548, 549 

DATLYW: 305, 348 PANDX: 100, 410 INTLD: 548, 549 

IJATLYR: 310, 348 PANDX: . .  100, 410 XNTLD: 545, 575 
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512 

s13 

815 

S16 

517 

S18 

520 

s2 1 

522 

S91 

592 

593 

s94 

SlOi 

5102 ' 

5103 

SlO4 

SLOS 

S I O B  

Si07 

$108 

S A M  

SDA 

DATLYH: 305, 347 PANDXr 430 

RATLYR 305, 348PANDX: 430INTLD 552, 559 

PANDX: 100, 140 INTLD 548, 549 

DATLYR: 348 

DATLYR: 347 

DATLYR: 348 

INTLD 490 

IMTLD: 553 

. INTLD 553 

DATLYR. 351 

DATLYR. 351 

VATLYR 351 

DATLYR: 351 

DATLYR: 360 

DATLYR:. 360 

DATLYR: 360 

DATLYR: 360 

DATLYR: 360 

DATLYR: 360 
I 

DATLYR: 360 

DATLYR: 360 

Discrete point option in GEOM 

Regional data axea, all parametera ured in PANDX, INTLD 
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, 

*e2 
SGFE2 

SGFTZ Qse.: L 

SHTN2 Qa2 

SIGO % 
SIGFE b e  
3IGFT 

SXGTH re  

SINFI 

SINNT 

SKIP 

SL1 

SL2 

SPNO 

SPNN 

SPRL 

SQ3 

SQ4 

SQ6 

STA 

STAP 

STAW 

Meridional 8tresses for choaen eecond layer 

Shear stresses for chosen second layer 

Circwnfereitial stresses for chosen surface 

Reference stress (psi) 

Meridional stresees for inner surface 

Shear stresses for inner surface 

Ci rc umfe rentia 1 s t re s s e s for ixrne r surface 

SIN (ANX), used to computed It in coaercylinder, GEOM 

SIN (ne), used in Fourier summing 

Path indicator, = I. for fictitious discontinuity, PANDX 

Path indicator, = 0. for printing when SUM=O, 

Path indicator, = 0. after the first pass when summing 

Initial ~pening angle of conics (station 1) 

Terminal opening angle of conics (station n) 

Location of spring, SDPI (3) 

Summing coefficient A0 * SIGO/EO 

Summing coefficient SIGO * HO ** 3/AQ 

Summing coefficient SIGO * HO 
DATLRS, stations a,& which loads are  giveri in loads tablee; 
DATLY R, combined TSTA and THSTA 

Temporary array stations of apex interpolation in discrete 
point option 

Temporary array stations of apex interpolation in discrete 
point option 
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STAX 

STC+MB 

STN 

STRI 

STRIX 

SUM 

SUMN 

SUMS 

SURB 

SURF 

SURN 

T 

T 

T2 

- 

TAB 

TB+T 

TB+TX 

TBT 

TEMP 

Array of meridional stations, PIX 

Subroutine to combine thickness and temperat .re stations 

Temperature loads station numbers 

Layer number for second stress print (other = inner surface) 

STRI in DAL data area 

Indicator, nonzero for multiple Fourier components 
t = summing, with prints at ENFOR values - = discrete Fourier values, printed each time, no CRT 

Auxil'ary array for summing current Fourier components 
with previous sums 

Subroutine which sums Fourier components and prints results 

Arc le*.gth in intermediate arc length computation in 
discrete point option 

Arc length to station location 

Arc length in intermediate arc length computation in conics 
option 

Temperature change for N summations, SDA (1226) 

T for second surface where stresses are computed, 
SDA (2799) 

Data tables for pressure and temperature loads 

Loads table for the temperatures on the inner surface 

Table location for TBOT values for next Fourier component 

Temperatures for inner surface at STN stations, DATLDS 

NFE-x=NTH loads array resulting from double. interpolation 
6f data 



TH Thicknesses at stations, layers 

THETA 0 Circumferential angles, ten maximum (degrees) 

THETX 

THEX 

Circumferential angles for summing loads 

Theta value read from tape, PIX 

THK Thicknesses at combined stations (STA)/layer 

THSTA Statior, numbers at  which thicknesses a re  given 

TIB T Temperature indicator, inner face (see explanation for DLD 
data) 

TITP 

T L ~ C  

TMP 

TMPA1 

TMPA2 

TMFA3 

TMPEl 

TMPE2 

TMPE3 

TSTA 

TT@P 

TT4PX 

TTP 

Temperature indicator, outer iace (see explanation for DLD 
data) 

Table locations, PFEX,  PTHX, PNX, TBOTX, TTOPX 

Temperatures at  combined stations (STA)/layer 

Temperatures a+ which thermal expansion coefficients are 
given, material 1 

Temperatures at  which thermal expansion coefficients are 
given, material 2 

Temperatures at which thermal expansion coefficients are 
given, material 3 

Temperatures at which Young's moduli are given, material 1 

Temperatures at which Young's moduli are given, material 2 

Temperatwas at  which Young's moduli are given, material 3 

Station numbers at which temperatures a r e  given 

Loads table for the temperatures on the outer surface 

Table location for TTOP values for next Fourier component 

'Temperatures for outer au rhce  at STN stations, DATLDS 
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TX 

UK 

UP 

USUM 

VAL 

VK 

VP 

VSUM 

W 

WF 

W F E  "6 

WFEN 

W FEP 

W F P  

WFW 

W K  

WP 

WSUM 

WT 

Array used as temporary storage in IIATLYR 

Spring value in the meridional direction 

First derivative of u deflection 

Array which includes all Fburier sums 

Loads values picked up from'data tables 

Spring value in the circumferential direction 

First derivative of the V deflections 

Array for summing V deflections 

Intermediate designation of meridional curvatures in 
discrete points option for smoothing 

Nondimensional curvature in the meridional direction 

WFE at last point, previous region 

First derivative of WFE 

Intermediate designation of meridional curs tures  in the 
discrete point option 

latermediate designation of meridional curvatures in the 
discrete point option 

Spring value in the normal direction 

First derivative of the W deflection 

Array for summing W deflections 

Intermediate deeignation 6.- circumferential curvatures in 
diecrete points for smoothing 



W TH 

W T H D  

X 

X 

- 

xo 

X D  

X f P T  

X J  

XSI 

Y 

Y D  

YM1 

- 

YM2 

YM3 

YMX 

z 

Z 

- 

ZO 

0 8  Cur rent W T H D  value 

Nondimen s ional curvature in the c ircumfe rential direction 

Two-dimensional array (Equations 4, 150) used to store the 
X matrices (Equation 74) at each meridional station/ region 

4-x-1 matrix for X at the (N -1)st station of the previous 
region 

4-x-4 matrix used at top discontinuity point 

Discrete X distances, GEOM or  arc  lengths 

Intermediate X distances for better curve fitting of 
discrete points 

X distance array used with R ' s  to plot shell shape/region 

4-x-4 matrix used at top discontinuity point 

Young ' s  moduli data, entered for TMPEl temperatures, 
first material 

Young's  moduli data, entered for TMPEZ temperatures, 
second material 

Young's moduli data, entcred for TMPE3 temperatures, 
third material 

Constant Young Is 
loads 

modulus when there are no temperature 

Two dimensional array (Equations 4, 150) of solutions 
(Equation 73) 

4-x-1 matrix for 2 at the (N -1)st station of the previous 
region 
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Z1M1 

ZETA 

ZNPl 

ZTA 

Solution matrix for fictitious point before station 1 

Intermediate cylindrical coordinates in cdnics option 

Solution matrix for fictitiaus point after station N 

Station interpolated cylindrical coordinakes in conics option 
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